Zobrazeno 1 - 10
of 136
pro vyhledávání: '"Smith, S. Paul"'
This paper determines the symplectic leaves for a remarkable Poisson structure on $\mathbb{C}\mathbb{P}^{n-1}$ discovered by Feigin and Odesskii, and, independently, by Polishchuk. The Poisson bracket is determined by a holomorphic line bundle of deg
Externí odkaz:
http://arxiv.org/abs/2210.13042
Fix a pair of relatively prime integers $n>k\ge 1$, and a point $(\eta\,|\,\tau)\in\mathbb{C}\times\mathbb{H}$, where $\mathbb{H}$ denotes the upper-half complex plane, and let ${{a\;\,b}\choose{c\,\;d}}\in\mathrm{SL}(2,\mathbb{Z})$. We show that Fei
Externí odkaz:
http://arxiv.org/abs/2108.09143
The algebras $Q_{n,k}(E,\tau)$ introduced by Feigin and Odesskii as generalizations of the 4-dimensional Sklyanin algebras form a family of quadratic algebras parametrized by coprime integers $n>k\ge 1$, a complex elliptic curve $E$, and a point $\ta
Externí odkaz:
http://arxiv.org/abs/2006.12283
Publikováno v:
Forum Math. Sigma 9 (2021), e4
The elliptic algebras in the title are connected graded $\mathbb{C}$-algebras, denoted $Q_{n,k}(E,\tau)$, depending on a pair of relatively prime integers $n>k\ge 1$, an elliptic curve $E$, and a point $\tau\in E$. This paper examines a canonical hom
Externí odkaz:
http://arxiv.org/abs/1908.06525
Let $E$ be an elliptic curve. When the symmetric group $\Sigma_{g+1}$ of order $(g+1)!$ acts on $E^{g+1}$ in the natural way, the subgroup $E_0^{g+1}$, consisting of those $(g+1)$-tuples whose coordinates sum to zero, is stable under the action of $\
Externí odkaz:
http://arxiv.org/abs/1905.06710
This paper examines an algebraic variety that controls an important part of the structure and representation theory of the algebra $Q_{n,k}(E,\tau)$ introduced by Feigin and Odesskii. The $Q_{n,k}(E,\tau)$'s are a family of quadratic algebras dependi
Externí odkaz:
http://arxiv.org/abs/1903.11798
We study the elliptic algebras $Q_{n,k}(E,\tau)$ introduced by Feigin and Odesskii as a generalization of Sklyanin algebras. They form a family of quadratic algebras parametrized by coprime integers $n>k\geq 1$, an elliptic curve $E$, and a point $\t
Externí odkaz:
http://arxiv.org/abs/1812.09550
Autor:
Smith, S. Paul
In 1982 E.K. Sklyanin defined a family of graded algebras $A(E,\tau)$, depending on an elliptic curve $E$ and a point $\tau \in E$ that is not 4-torsion. The present paper is concerned with the structure of $A$ when $\tau$ is a point of finite order,
Externí odkaz:
http://arxiv.org/abs/1802.06023
Publikováno v:
Trans. Amer. Math. Soc. 372 (2019) no. 6, 3947-3983
We introduce a new method to construct 4-dimensional Artin-Schelter regular algebras as normal extensions of (not necessarily noetherian) 3-dimensional ones. The method produces large classes of new 4-dimensional Artin-Schelter regular algebras. When
Externí odkaz:
http://arxiv.org/abs/1706.05754
Autor:
Chirvasitu, A., Smith, S. Paul
The 4-dimensional Sklyanin algebras are a well-studied 2-parameter family of non-commutative graded algebras, often denoted A(E,tau), that depend on a quartic elliptic curve E in P^3 and a translation automorphism tau of E. They are graded algebras g
Externí odkaz:
http://arxiv.org/abs/1702.00377