Zobrazeno 1 - 10
of 130
pro vyhledávání: '"Smit, Bart A"'
Autor:
Borger, James, de Smit, Bart
We consider generalized $\Lambda$-structures on algebras and schemes over the ring of integers $\mathit{O}_K$ of a number field $K$. When $K=\mathbb{Q}$, these agree with the $\lambda$-ring structures of algebraic K-theory. We then study reduced fini
Externí odkaz:
http://arxiv.org/abs/1809.02295
We prove that two global fields are isomorphic if and only if there is an isomorphism of groups of Dirichlet characters that preserves L-series.
Comment: 14 pages
Comment: 14 pages
Externí odkaz:
http://arxiv.org/abs/1706.04515
Autor:
de Smit, Bart, Solomatin, Pavel
The main purpose of this paper is to extend results on isomorphism types of the abelianized absolute Galois group $\mathcal G_K^{ab}$, where $K$ denotes imaginary quadratic field. In particular, we will show that if the class number $h_K$ of an imagi
Externí odkaz:
http://arxiv.org/abs/1703.07241
Autor:
de Smit, Bart, Solomatin, Pavel
The main purpose of this paper is to describe the abelian part $\mathcal G^{ab}_{K}$ of the absolute Galois group of a global function field $K$ as pro-finite group. We will show that the characteristic $p$ of $K$ and the non $p$-part of the class gr
Externí odkaz:
http://arxiv.org/abs/1703.05729
Autor:
Borger, James, de Smit, Bart
Let O be the ring of integers of a number field K. For an O-algebra R which is torsion free as an O-module we define what we mean by a Lambda_O-ring structure on R. We can determine whether a finite etale K-algebra E with Lambda_O-ring structure has
Externí odkaz:
http://arxiv.org/abs/1105.4662
Autor:
Bartel, Alex, de Smit, Bart
Publikováno v:
J. London Math. Soc. 88 (2013), 845-859
We prove very general index formulae for integral Galois modules, specifically for units in rings of integers of number fields, for higher K-groups of rings of integers, and for Mordell-Weil groups of elliptic curves over number fields. These formula
Externí odkaz:
http://arxiv.org/abs/1105.3876
Publikováno v:
Trans. Amer. Math. Soc. 365 (2013), 6149-6165
Let $\mathcal{W}$ be a complete local commutative Noetherian ring with residue field $k$ of positive characteristic $p$. We study the inverse problem for the versal deformation rings $R_{\mathcal{W}}(\Gamma,V)$ relative to $\mathcal{W}$ of finite dim
Externí odkaz:
http://arxiv.org/abs/1012.1290
The covering spectrum is a geometric invariant of a Riemannian manifold, more generally of a metric space, that measures the size of its one-dimensional holes by isolating a portion of the length spectrum. In a previous paper we demonstrated that the
Externí odkaz:
http://arxiv.org/abs/1006.5414
If $L/K$ is a finite Galois extension of local fields, we say that the valuation criterion $VC(L/K)$ holds if there is an integer $d$ such that every element $x \in L$ with valuation $d$ generates a normal basis for $L/K$. Answering a question of Byo
Externí odkaz:
http://arxiv.org/abs/1004.2480
We study the inverse problem for the versal deformation rings $R(\Gamma,V)$ of finite dimensional representations $V$ of a finite group $\Gamma$ over a field $k$ of positive characteristic $p$. This problem is to determine which complete local commut
Externí odkaz:
http://arxiv.org/abs/1003.3143