Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Slutsky, Raz"'
Autor:
Gelander, Tsachik, Slutsky, Raz
We show that an arithmetic lattice $\Gamma$ in a semi-simple Lie group $G$ contains a torsion-free subgroup of index $\delta(v)$ where $v = \mu (G/\Gamma)$ is the co-volume of the lattice. We prove that $\delta$ is polynomial in general and poly-loga
Externí odkaz:
http://arxiv.org/abs/2311.15976
We show that the space of traces of the free group $F_d$ on $2\leq d \leq \infty $ generators is a Poulsen simplex, i.e., every trace is a pointwise limit of extreme traces. This fails for many virtually free groups. The same result holds for free pr
Externí odkaz:
http://arxiv.org/abs/2308.10955
We establish vanishing results for limits of characters in various discrete groups, most notably irreducible lattices in higher rank semisimple Lie groups. As an application, we show that any sequence of finite-dimensional representations converges t
Externí odkaz:
http://arxiv.org/abs/2308.05562
Autor:
Lubotzky, Alexander, Slutsky, Raz
$ $Abert, Gelander and Nikolov [AGN17] conjectured that the number of generators $d(\Gamma)$ of a lattice $\Gamma$ in a high rank simple Lie group $H$ grows sub-linearly with $v = \mu(H / \Gamma)$, the co-volume of $\Gamma$ in $H$. We prove this for
Externí odkaz:
http://arxiv.org/abs/2101.07227
Autor:
Gelander, Tsachik, Slutsky, Raz
Publikováno v:
Journal of Lie Theory, 30(1), 33-40
We prove that the rank (that is, the minimal size of a generating set) of lattices in a general connected Lie group is bounded by the co-volume of the projection of the lattice to the semi-simple part of the group. This was proved by Gelander for sem
Externí odkaz:
http://arxiv.org/abs/1903.04828
We consider Riemann mappings from bounded Lipschitz domains in the plane to a triangle. We show that in this case the Riemann mapping has a linear variational principle: it is the minimizer of the Dirichlet energy over an appropriate affine space. By
Externí odkaz:
http://arxiv.org/abs/1711.02221
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America, 2019 Jan . 116(3), 732-737.
Externí odkaz:
https://www.jstor.org/stable/26574094
Autor:
Lubotzky, Alexander, Slutsky, Raz
Publikováno v:
Michigan Mathematical Journal. 72
$ $Abert, Gelander and Nikolov [AGN17] conjectured that the number of generators $d(\Gamma)$ of a lattice $\Gamma$ in a high rank simple Lie group $H$ grows sub-linearly with $v = \mu(H / \Gamma)$, the co-volume of $\Gamma$ in $H$. We prove this for
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.