Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Slonim, Daniel"'
Autor:
Slonim, Daniel J.
This paper studies random walks in i.i.d. random environments on $\mathbb{Z}^d$ when there are two basic types of vertices, which we call "blue" and "red," with drifts in different directions. We introduce a method of studying these walks that compar
Externí odkaz:
http://arxiv.org/abs/2311.00062
Autor:
Slonim, Daniel J.
For a shift-invariant weighted directed graph with vertex set $\mathbb{Z}$, we examine the minimal weight $\kappa_0$ exiting a finite, strongly connected set of vertices. Although $\kappa_0$ is defined as an infimum, it has been shown that the infimu
Externí odkaz:
http://arxiv.org/abs/2205.07414
Autor:
Slonim, Daniel J.
We characterize ballistic behavior for general i.i.d. random walks in random environments on $\mathbb{Z}$ with bounded jumps. The two characterizations we provide do not use uniform ellipticity conditions. They are natural in the sense that they both
Externí odkaz:
http://arxiv.org/abs/2205.06419
Autor:
Slonim, Daniel J.
This paper has two main results, which are connected through the fact that the first is a key ingredient in the second. Both are extensions of results concerning directional transience of nearest-neighbor random walks in random environments to allow
Externí odkaz:
http://arxiv.org/abs/2108.11424
Autor:
Slonim, Daniel J.
We examine a class of random walks in random environments on $\mathbb{Z}$ with bounded jumps, a generalization of the classic one-dimensional model. The environments we study have i.i.d. transition probability vectors drawn from Dirichlet distributio
Externí odkaz:
http://arxiv.org/abs/2104.14950
Path sets are spaces of one-sided infinite symbol sequences corresponding to the one-sided infinite walks beginning at a fixed initial vertex in a directed labeled graph. Path sets are a generalization of one-sided sofic shifts. This paper studies de
Externí odkaz:
http://arxiv.org/abs/2101.02441
Publikováno v:
Advances in Applied Mathematics 126 (2021), no 1, 351--376
This paper studies subsets of one-sided shift spaces on a finite alphabet. Such subsets arise in symbolic dynamics, in fractal constructions, and in number theory. We study a family of decimation operations, which extract subsequences of symbol seque
Externí odkaz:
http://arxiv.org/abs/2010.15215
Autor:
Slonim, Daniel J.1 dslonim@hillsdale.edu
Publikováno v:
ALEA. Latin American Journal of Probability & Mathematical Statistics. 2024, Vol. 21 Issue 1, p701-724. 24p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Advances in Applied Mathematics May 2021 126