Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Slevinsky, Richard Mikaël"'
We aim to find conditions on two Hilbert space operators $A$ and $B$ under which the expression $AX-XB$ having low rank forces the operator $X$ itself to admit a good low rank approximation. It is known that this can be achieved when $A$ and $B$ are
Externí odkaz:
http://arxiv.org/abs/2308.11533
Autor:
Slevinsky, Richard Mikael
Rational approximations of generalized hypergeometric functions ${}_pF_q$ of type $(n+k,k)$ are constructed by the Drummond and factorial Levin-type sequence transformations. We derive recurrence relations for these rational approximations that requi
Externí odkaz:
http://arxiv.org/abs/2307.06221
We describe fast algorithms for approximating the connection coefficients between a family of orthogonal polynomials and another family with a polynomially or rationally modified measure. The connection coefficients are computed via infinite-dimensio
Externí odkaz:
http://arxiv.org/abs/2302.08448
We discuss a fast approximate solution to the associated classical -- classical orthogonal polynomial connection problem. We first show that associated classical orthogonal polynomials are solutions to a fourth-order quadratic eigenvalue problem with
Externí odkaz:
http://arxiv.org/abs/2102.08227
A mechanism is described to symmetrize the ultraspherical spectral method for self-adjoint problems. The resulting discretizations are symmetric and banded. An algorithm is presented for an adaptive spectral decomposition of self-adjoint operators. S
Externí odkaz:
http://arxiv.org/abs/1903.08538
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Li, Yu, Slevinsky, Richard Mikael
We present a unified treatment of the Fourier spectra of spherically symmetric nonlocal diffusion operators. We develop numerical and analytical results for the class of kernels with weak algebraic singularity as the distance between source and targe
Externí odkaz:
http://arxiv.org/abs/1810.07131
A rapid algorithm is derived for the Helmholtz--Hodge decomposition on the surface of the sphere in spherical coordinates. The algorithm uncouples modes of spherical harmonics with different absolute order, writes the conversion as barely-overdetermi
Externí odkaz:
http://arxiv.org/abs/1809.04555
We present algorithms for solving spatially nonlocal diffusion models on the unit sphere with spectral accuracy in space. Our algorithms are based on the diagonalizability of nonlocal diffusion operators in the basis of spherical harmonics, the compu
Externí odkaz:
http://arxiv.org/abs/1801.04902
Publikováno v:
In Journal of Computational and Applied Mathematics 15 March 2022 403