Zobrazeno 1 - 10
of 214
pro vyhledávání: '"Slesar, A."'
We use the transverse K\"ahler-Ricci flow on the canonical foliation of a closed Vaisman manifold to deform the Vaisman metric into another Vaisman metric with a transverse K\"ahler-Einstein structure. We also study the main features of such a manifo
Externí odkaz:
http://arxiv.org/abs/2205.02120
Autor:
Ornea, Liviu, Slesar, Vladimir
We construct a type of transverse deformations of a Vaisman manifold, which preserves the canonical foliation. For this construction we only need a basic 1-form with certain properties. We show that such basic 1-forms exist in abundance.
Externí odkaz:
http://arxiv.org/abs/2204.01140
Autor:
Slesar Evgeniy A.
Publikováno v:
Художественная культура, Iss 1, Pp 244-273 (2024)
This paper is focused on the means of transforming Trinity Sunday and attempts to “reinvent” this festival into the Russian Birch festival. In late 50s of the 20th century in a burst of the anticlerical campaign, the Soviet festival committees we
Externí odkaz:
https://doaj.org/article/b91c2db5b32d450aa49a6edb8f050930
Publikováno v:
Rom. Rep. Phys. 72 (2020) 108
In this paper we investigate the possibility to obtain locally new Sasaki-Einstein metrics on the space $T^{1,1}$ considering a deformation of the standard metric tensor field. We show that from the geometric point of view this deformation leaves tra
Externí odkaz:
http://arxiv.org/abs/1905.05024
Autor:
Ornea, Liviu, Slesar, Vladimir
In this paper we investigate the spectral sequence associated to a Riemannian foliation which arises naturally on a Vaisman manifold. Using the Betti numbers of the underlying manifold we establish a lower bound for the dimension of some terms of thi
Externí odkaz:
http://arxiv.org/abs/1701.05843
Publikováno v:
Annals of Physics 361 (2015) 548--562
In the present paper we show that the complete list of special Killing forms on the 5-dimensional Sasaki-Einstein spaces $Y^{p,q}$ can be extracted using the symplectic potential and the classical Delzant construction. The results achieved here agree
Externí odkaz:
http://arxiv.org/abs/1506.04483
Publikováno v:
Rom. Journ. Phys. 61 (2016) 260-275
Throughout this paper we investigate the complex structure of the conifold $C(T^{1,1})$ basically making use of the interplay between symplectic and complex approaches of the K\"{a}hler toric manifolds. The description of the Calabi-Yau manifold $C(T
Externí odkaz:
http://arxiv.org/abs/1503.00443
Autor:
Slesar, Vladimir
Publikováno v:
Journal of Geometry and Physics 96 (2015) 204-211
In this note we give a characterization of taut Riemannian foliations using the transverse divergence. This result turns out to be a convenient tool in the case of some standard examples. Furthermore, we show that a classical tautness result of Haefl
Externí odkaz:
http://arxiv.org/abs/1411.7214
Autor:
Ornea, Liviu, Slesar, Vladimir
Publikováno v:
Mathematische Zeitschrift 284 (2016), no. 1-2, 469-489
In this paper we find sufficient conditions for the vanishing of the Morse-Novikov cohomology on Riemannian foliations. We work out a Bochner technique for twisted cohomological complexes, obtaining corresponding vanishing results. Also, we generaliz
Externí odkaz:
http://arxiv.org/abs/1410.8748
Publikováno v:
Phys. Scr. 89 (2014) 125205
In this paper we study the interplay between complex coordinates on the Calabi-Yau metric cone and the special Killing forms on the toric Sasaki-Einstein manifold. In the general case we give a procedure to locally construct the special Killing forms
Externí odkaz:
http://arxiv.org/abs/1403.1015