Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Sleiman Skaf"'
Autor:
Marie Therese Abi Saab, Ihab Jomaa, Rima El Hage, Sleiman Skaf, Salim Fahed, Ziad Rizk, Randa Massaad, Dany Romanos, Yara Khairallah, Valerie Azzi, Rhend Sleiman, Roula Abi Saad, Celine Hajjar, Mohamed Houssemeddine Sellami, Rodolph Aziz, Rita Sfeir, Marie Helene Nassif, Javier Mateo-Sagasta
Publikováno v:
Water, Vol 14, Iss 9, p 1437 (2022)
The use of polluted water to irrigate is an increasing problem in the developing world. Lebanon is a case in point, with heavily polluted irrigation waters, particularly in the Litani River Basin. This study evaluated the potential health risks of ir
Externí odkaz:
https://doaj.org/article/37e078fcdc76485c88759d79110f6ad1
Autor:
Marie Therese Abi Saab, Razane El Alam, Ihab Jomaa, Sleiman Skaf, Salim Fahed, Rossella Albrizio, Mladen Todorovic
Publikováno v:
Agronomy, Vol 11, Iss 11, p 2265 (2021)
The coupling of remote sensing technology and crop growth models represents a promising approach to support crop yield prediction and irrigation management. In this study, five vegetation indices were derived from the Copernicus-Sentinel 2 satellite
Externí odkaz:
https://doaj.org/article/69c2272a3f2e4108a073db6d04013173
Publikováno v:
Water, Vol 11, Iss 2, p 252 (2019)
The suitability of cloud-based irrigation technologies remains questionable due to limited information on their evaluation in the field. This study focussed on the on-field assessment of a smartphone irrigation scheduling tool—Bluleaf®—with resp
Externí odkaz:
https://doaj.org/article/378ea003355745b3bf08cbf31b752c99
Autor:
Razane El Alam, Mladen Todorovic, Marie Therese Abi Saab, Ihab Jomaa, Salim Fahed, Sleiman Skaf, Rossella Albrizio
Publikováno v:
Agronomy, Vol 11, Iss 2265, p 2265 (2021)
Agronomy
Volume 11
Issue 11
Agronomy (Basel) 11 (2021). doi:10.3390/agronomy11112265
info:cnr-pdr/source/autori:Abi Saab M.T.; El Alam R.; Jomaa I.; Skaf S.; Fahed S.; Albrizio R.; Todorovic M./titolo:Coupling remote sensing data and aquacrop model for simulation of winter wheat growth under rainfed and irrigated conditions in a mediterranean environment/doi:10.3390%2Fagronomy11112265/rivista:Agronomy (Basel)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume:11
Agronomy
Volume 11
Issue 11
Agronomy (Basel) 11 (2021). doi:10.3390/agronomy11112265
info:cnr-pdr/source/autori:Abi Saab M.T.; El Alam R.; Jomaa I.; Skaf S.; Fahed S.; Albrizio R.; Todorovic M./titolo:Coupling remote sensing data and aquacrop model for simulation of winter wheat growth under rainfed and irrigated conditions in a mediterranean environment/doi:10.3390%2Fagronomy11112265/rivista:Agronomy (Basel)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume:11
The coupling of remote sensing technology and crop growth models represents a promising approach to support crop yield prediction and irrigation management. In this study, five vegetation indices were derived from the Copernicus-Sentinel 2 satellite
Publikováno v:
Atmospheric and Climate Sciences. :369-380
Rain gages data represents limited spatial coverage, especially in rugged terrains like Lebanon. Other precipitation data sources are the developing satellite and radar technologies. In this study, Tropical Rain Measurement Mission (TRMM) monthly rai