Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Skrypnik, Igor V."'
Publikováno v:
Transactions of the American Mathematical Society, 2006 Sep 01. 358(9), 3851-3881.
Externí odkaz:
https://www.jstor.org/stable/3845359
Autor:
Maso, Gianni Dal, Skrypnik, Igor V.
We study the asymptotic behaviour of solutions to Dirichlet problems in perforated domains for nonlinear elliptic equations associated with monotone operators. The main difference with respect to the previous papers on this subject is that no uniform
Externí odkaz:
http://arxiv.org/abs/math/0010232
Publikováno v:
Transactions of the American Mathematical Society, 2002 Apr 01. 354(4), 1601-1630.
Externí odkaz:
https://www.jstor.org/stable/2693832
Publikováno v:
Transactions of the American Mathematical Society, 2000 Oct 01. 352(10), 4603-4640.
Externí odkaz:
https://www.jstor.org/stable/221756
Publikováno v:
In Journal of Differential Equations 2005 214(1):189-231
Publikováno v:
In Journal of Differential Equations 1 July 1999 155(2):443-475
Publikováno v:
Adv. Differential Equations 12, no. 11 (2007), 1275-1320
Let $X$ be a real reflexive Banach space with dual $X^*.$ Let $T:X\supset D(T)\to 2^{X^*}$ be maximal monotone, and $C:X\supset D(C)\to X^*.$ A theory of domain invariance is developed, in which various conditions are given for a nonlinear operator o
Publikováno v:
Abstr. Appl. Anal. 2005, no. 2 (2005), 121-158
Let $X$ be an infinite-dimensional real reflexive Banach space with dual space $X^*$ and $G\subset X$ open and bounded. Assume that $X$ and $X^*$ are locally uniformly convex. Let $T:X\supset D(T)\rightarrow 2^{X^*}$ be maximal monotone and $C:X\sups
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=project_eucl::68ff79c591f9a46cea7dee5f16a2bcb8
http://projecteuclid.org/euclid.aaa/1116340205
http://projecteuclid.org/euclid.aaa/1116340205
Autor:
Gajewski, Herbert, Skrypnik, Igor V.
We prove global existence and uniqueness of bounded weak solutions to Cauchy--Neumann problems for degenerate parabolic equations with drift terms determined by integral equations instead of by elliptic boundary problems as in the corresponding local
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9f5a79ce045d49758d681a6b717d36be
Autor:
Gajewski, Herbert, Skrypnik, Igor V.
We prove existence, boundedness and uniqueness of solutions to Cauchy-Dirichlet problems for elliptic-parabolic systems, where the specific coupling is such that the solution of the elliptic equation forms a drift term in the parabolic equation. Such
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8968703a07bf8aece82fc8635b4d8ae9