Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Skriganov, M. M."'
Autor:
Skriganov, M. M.
It is shown that the discrepancy function for point distributions on a torus is expressed by an explicit formula in terms of its mean values on sub-tori. As an application of this formula, a simple proof of a theorem of Lev on the equivalence of $L_{
Externí odkaz:
http://arxiv.org/abs/2309.01547
Autor:
Skriganov, M. M.
Publikováno v:
Journal of Complexity, Volume 56, February 2020
We show that Stolarsky's invariance principle, known for point distributions on the Euclidean spheres, can be extended to the real, complex, and quaternionic projective spaces and the octonionic projective plane. A part of the results (Theorem~1.1 an
Externí odkaz:
http://arxiv.org/abs/1805.03541
Autor:
Skriganov, M. M.
Upper bounds for the $L_p$-discrepancies of point distributions in compact metric measure spaces for $0
Externí odkaz:
http://arxiv.org/abs/1802.01577
Autor:
Skriganov, M. M.
We consider point distributions in compact connected two-point homogeneous spaces (Riemannian symmetric spaces of rank one). All such spaces are known, they are the spheres in the Euclidean spaces, the real, complex and quaternionic projective spaces
Externí odkaz:
http://arxiv.org/abs/1701.04545
Autor:
Skriganov, M. M.
We consider finite point subsets (distributions) in compact metric spaces. In the case of general rectifiable metric spaces, non-trivial bounds for sums of distances between points of distributions and for discrepancies of distributions in metric bal
Externí odkaz:
http://arxiv.org/abs/1701.04007
Autor:
Skriganov, M. M.
We consider finite point subsets (distributions) in compact metric spaces. Non-trivial bounds for sums of distances between points of distributions and for discrepancies of distributions in metric balls are given in the case of general rectifiable me
Externí odkaz:
http://arxiv.org/abs/1512.00364
Autor:
Skriganov, M. M.
Dyadic shifts of point distributions in the multi-dimensional unit cube are considered as a randomization. Explicit formulas for the discrepancies of such randomized distributions are given in the paper in terms of Rademacher functions. Relaying on t
Externí odkaz:
http://arxiv.org/abs/1409.1997
Autor:
Skriganov, M. M.
In the present paper we introduce and study finite point subsets of a special kind, called optimum distributions, in the n-dimensional unit cube. Such distributions are closely related with known (delta,s,n)-nets of low discrepancy. It turns out that
Externí odkaz:
http://arxiv.org/abs/math/9909163
Autor:
Skriganov, M. M.1 (AUTHOR) mmskrig@gmail.com
Publikováno v:
Constructive Approximation. Apr2020, Vol. 51 Issue 2, p413-425. 13p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.