Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Skopenkov, M."'
Motivated by the design of flexible nets, we classify all nets of arbitrary size m x n that admit a continuous family of area-preserving Combescure transformations. There are just two different classes. The nets in the first class are special cases o
Externí odkaz:
http://arxiv.org/abs/2402.16753
Autor:
Skopenkov, M., Ustinov, A.
Publikováno v:
Russian Math. Surveys 77:3(465) (2022), 73-160
We survey and develop the most elementary model of electron motion introduced by R.Feynman. In this game, a checker moves on a checkerboard by simple rules, and we count the turns. Feynman checkers are also known as a one-dimensional quantum walk or
Externí odkaz:
http://arxiv.org/abs/2007.12879
Autor:
Berstein, M., Blinkov, A., Bragin, V., Burman, Yu., Dorichenko, S., Gavriliuk, A., Kanel-Belov, A., Klyachko, A., Kozhevnikov, P., Malinovskaya, O., Permiakov, D., Protasov, V., Shapovalov, A., Sharov, F., Skopenkov, A., Skopenkov, M., Zaslavsky, A.
Publikováno v:
Math. via problems. Part 1. Algebra. MSRI Math. Circl Libr 25. AMS; Berkeley, CA: MSRI, 2021, 196 pp
This is a collection of teaching materials used in several Russian universities, schools, and mathematical circles. Most problems are chosen in such a way that in the course of the solution and discussion a reader learns important mathematical ideas
Externí odkaz:
http://arxiv.org/abs/1905.10210
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pakharev, A., Skopenkov, M.
Publikováno v:
Uspekhi Mat. Nauk, 72:2(434) (2017), 195-196; Russian Math. Surveys, 72:2 (2017), 381-383
We find all analytic surfaces in space R^3 such that through each point of the surface one can draw two circular arcs fully contained in the surface. The proof uses a new decomposition technique for quaternionic matrices.
Comment: in English and
Comment: in English and
Externí odkaz:
http://arxiv.org/abs/1510.06510
Autor:
Skopenkov, M., Krasauskas, R.
Publikováno v:
Math. Ann. (2019) 373: 1299-1327
We study analytic surfaces in 3-dimensional Euclidean space containing two circular arcs through each point. The problem of finding such surfaces traces back to the works of Darboux from XIXth century. We reduce finding all such surfaces to the algeb
Externí odkaz:
http://arxiv.org/abs/1503.06481
Autor:
Prasolov, M., Skopenkov, M.
Publikováno v:
J. Combinatorial Theory, Series A 118:3 (2011) 920-937
This paper is on tilings of polygons by rectangles. A celebrated physical interpretation of such tilings due to R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte uses direct-current circuits. The new approach of the paper is an application of alte
Externí odkaz:
http://arxiv.org/abs/1002.1356
Publikováno v:
Sbornik: Mathematics 203:11 (2012), 1654-1681
This paper is on the classical Knotting Problem: for a given manifold N and a number m describe the set of isotopy classes of embeddings $N\to S^m$. We study the specific case of knotted tori, i. e. the embeddings $S^p \times S^q \to S^m$. The classi
Externí odkaz:
http://arxiv.org/abs/0811.2745
Publikováno v:
Russian Math. Surv. 62:5 (2007), 985-987
This paper is devoted to the classification of embeddings of higher dimensional manifolds. We study the case of embeddings $S^p\times S^q\to S^m$, which we call knotted tori. The set of knotted tori in the the space of sufficiently high dimension, na
Externí odkaz:
http://arxiv.org/abs/0803.4285
Publikováno v:
Proc. Indian Acad. Sci. (Math. Sci.) 117:3 (2007), 301-306.
We present a short proof of the following Pontryagin theorem, whose original proof was complicated and has never been published in details: {\bf Theorem.} Let $M$ be a connected oriented closed smooth 3-manifold. Let $L_1(M)$ be the set of framed lin
Externí odkaz:
http://arxiv.org/abs/0705.4166