Zobrazeno 1 - 10
of 2 313
pro vyhledávání: '"Skein relation"'
Autor:
Hiraki, Moemi
The virtual skein relation for the Jones polynomial of the virtual link diagram was introduced by N. Kamada, S. Nakabo, and S. Satoh. H. A. Dye, L. H. Kauffman, and Y. Miyazawa introduced multivariable polynomial, an invariant of virtual links, which
Externí odkaz:
http://arxiv.org/abs/2203.14502
We study the skein relation that governs the HOMFLYPT invariant of links colored by one-column Young diagrams. Our main result is a categorification of this colored skein relation. This takes the form of a homotopy equivalence between two one-sided t
Externí odkaz:
http://arxiv.org/abs/2107.08117
Autor:
Ito, Noboru, Yoshida, Jun
In this paper, we discuss degree 0 crossing change on Khovanov homology in terms of cobordisms. Namely, using Bar-Natan's formalism of Khovanov homology, we introduce a sum of cobordisms that yields a morphism on complexes of two diagrams of crossing
Externí odkaz:
http://arxiv.org/abs/2005.12664
Autor:
Ito, Noboru, Yoshida, Jun
Khovanov homology is a categorification of the Jones polynomial, so it may be seen as a kind of quantum invariant of knots and links. Although polynomial quantum invariants are deeply involved with Vassiliev (aka. finite type) invariants, the relatio
Externí odkaz:
http://arxiv.org/abs/1911.09308
The Jones polynomial is a famous link invariant that can be defined diagrammatically via a skein relation. Khovanov homology is a richer link invariant that categorifies the Jones polynomial. Using spectral sequences, we obtain a skein-type relation
Externí odkaz:
http://arxiv.org/abs/1904.07794
Autor:
Karan, Aayush
Traditionally introduced in terms of advanced topological constructions, many link invariants may also be defined in much simpler terms given their values on a few initial links and a recursive formula on a skein triangle. Then the crucial question t
Externí odkaz:
http://arxiv.org/abs/1901.01556
Autor:
Ito, Noboru, Yoshida, Jun
Publikováno v:
In Topology and its Applications 1 June 2021 296
We show that the bordered-sutured Floer invariant of the complement of a tangle in an arbitrary 3-manifold $Y$, with minimal conditions on the bordered-sutured structure, satisfies an unoriented skein exact triangle. This generalizes a theorem by Man
Externí odkaz:
http://arxiv.org/abs/1811.00134
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Aicardi, Francesca
In this note we define a polynomial invariant for colored links by a skein relation. It specializes to the Jones polynomial for classical links.
Comment: 10 pages, 7 figures
Comment: 10 pages, 7 figures
Externí odkaz:
http://arxiv.org/abs/1508.07107