Zobrazeno 1 - 10
of 318
pro vyhledávání: '"Skaug, Hans"'
Autor:
Azzolini, Francesca, Skaug, Hans
Multimodality of the likelihood in Gaussian mixtures is a well-known problem. The choice of the initial parameter vector for the numerical optimizer may affect whether the optimizer finds the global maximum, or gets trapped in a local maximum of the
Externí odkaz:
http://arxiv.org/abs/2308.14700
We validate the recently introduced deep learning classification adapted Delta method by a comparison with the classical Bootstrap. We show that there is a strong linear relationship between the quantified predictive epistemic uncertainty levels obta
Externí odkaz:
http://arxiv.org/abs/2107.01606
An information theoretic approach to learning the complexity of classification and regression trees and the number of trees in gradient tree boosting is proposed. The optimism (test loss minus training loss) of the greedy leaf splitting procedure is
Externí odkaz:
http://arxiv.org/abs/2008.05926
This paper introduces a new measure of heritability which relaxes the classical assumption that the degree of heritability of a continuous trait can be summarized by a single number.This measure can be used in situations where the trait dependence st
Externí odkaz:
http://arxiv.org/abs/2004.08584
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models, but its direct application to deep neural networks is prevented by the large number of parameters $P$. We propose a low cost variant of the Delta m
Externí odkaz:
http://arxiv.org/abs/1912.00832
The Hessian matrix has a number of important applications in a variety of different fields, such as optimzation, image processing and statistics. In this paper we focus on the practical aspects of efficiently computing Hessian matrices in the context
Externí odkaz:
http://arxiv.org/abs/1905.05559
For certain types of statistical models, the characteristic function (Fourier transform) is available in closed form, whereas the probability density function has an intractable form, typically as an infinite sum of probability weighted densities. Im
Externí odkaz:
http://arxiv.org/abs/1811.05678
Autor:
Malde, Ketil, Seliussen, Bjørghild B., Quintela, María, Dahle, Geir, Besnier, François, Skaug, Hans J., Øien, Nils, Solvang, Hiroko K., Haug, Tore, Skern-Mauritzen, Rasmus, Kanda, Naohisa, Pastene, Luis A., Jonassen, Inge, Glover, Kevin A.
Publikováno v:
BMC Genomics (2017) 18:76
Background: In the marine environment, where there are few absolute physical barriers, contemporary contact between previously isolated species can occur across great distances, and in some cases, may be inter-oceanic. [..] in the minke whale species
Externí odkaz:
http://arxiv.org/abs/1809.01992
Publikováno v:
In Neural Networks January 2022 145:164-176