Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Skaskiv, O. B."'
For the Dirichlet series of the form $\displaystyle F(z,\omega)=\sum\nolimits_{k=0}^{+\infty} f_k(\omega)e^{z\lambda_k(\omega)} $ $ (z\in\mathbb{C},$ $\omega\in\Omega)$ with pairwise independent real exponents $(\lambda_k(\omega))$ on probability spa
Externí odkaz:
http://arxiv.org/abs/1703.03280
Autor:
Bandura, A. I., Skaskiv, O. B.
In this paper, there are obtained growth estimates of entire in $\mathbb{C}^n$ function of bounded $\mathbf{L}$-index in joint variables. They describe the behaviour of maximum modulus of entire function on a skeleton in a polydisc by behaviour of th
Externí odkaz:
http://arxiv.org/abs/1701.08276
A concept of boundedness of L-index in joint variables (see in Bordulyak M.T. The space of entire in $\mathbb{C}^n$ functions of bounded L-index, Mat. Stud., 4 (1995), 53--58. (in Ukrainian)) is generalised for analytic in a bidisc function. We prove
Externí odkaz:
http://arxiv.org/abs/1609.04190
In this paper we prove some analogue of Wiman's type inequality for random analytic functions in the polydisc $\mathbb{D}^p=\{z\in\mathbb{C}^p\colon |z_j|<1, j\in\{1,\ldots,p\}\},\ p\in\mathbb{Z}_+$. The obtained inequality is sharp.
Externí odkaz:
http://arxiv.org/abs/1602.04756
Let $F$ be an entire function represented by absolutely convergent for all $z\in\mathbb{C}$ Dirichlet series of the form $ F(z) = \sum\nolimits_{n=0}^{+\infty} a_{n}e^{z\lambda_{n}},$\ where a sequence $(\lambda_n)$ such that $\lambda_n\in\mathbb{R}\
Externí odkaz:
http://arxiv.org/abs/1512.08032
Autor:
Salo, T. M., Skaskiv, O. B.
For entire Dirichlet series of the form $F(z)=\sum\limits_{n=0}^{+\infty} a_{n}e^{z\lambda_n},\ 0\le\lambda_n\uparrow+\infty\ (n\to+\infty)$, we establish conditions under which the relation $$ F(x+iy)=(1+o(1))a_{\nu(x,F)}e^{(x+iy)\lambda_{\nu(x,F)}}
Externí odkaz:
http://arxiv.org/abs/1512.05557
Autor:
Bandura, A. I., Skaskiv, O. B.
We propose a generalisation of analytic in a domain function of bounded index, which was introduced by J. G. Krishna and S. M. Shah \cite{krishna}. In fact, analytic in the unit ball function of bounded index by Krishna and Shah is an entire function
Externí odkaz:
http://arxiv.org/abs/1501.04166
Autor:
Kuryliak, A. O., Skaskiv, O. B.
In this paper we consider a random entire function of the form $f(z,\omega )=\sum\nolimits_{n=0}^{+\infty}\xi_n(\omega )a_nz^n,$ where $\xi_n(\omega )$ are independent standard\break complex gaussian random variables and $a_n\in\mathbb{C}$ satisfy th
Externí odkaz:
http://arxiv.org/abs/1401.2776
For entire functions $f(z)=\sum_{n=0}^{+\infty}a_nz^n, z\in {\Bbb C},$ P. L${\rm \acute{e}}$vy (1929) established that in the classical Wiman's inequality $M_f(r)\leq\mu_f(r)\times $ $\times(\ln\mu_f(r))^{1/2+\varepsilon},\ \varepsilon>0,$ which hold
Externí odkaz:
http://arxiv.org/abs/1307.6164
Let $f(z)=\sum_{n=0}^{+\infty} a_nz^n$\ $(z\in\mathbb{C})$\ be an analytic function in the unit disk and $f_t$ be an analytic function of the form $f_t(z)=\sum_{n=0}^{+\infty} a_ne^{i\theta_nt}z^n,$ where $t\in\mathbb{R},$ $\theta_n\in\mathbb{N},$ an
Externí odkaz:
http://arxiv.org/abs/1206.3655