Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Skanda Koppula"'
Autor:
Lois Orosa, Skanda Koppula, Yaman Umuroglu, Konstantinos Kanellopoulos, Juan Gómez-Luna, Michaela Blott, Kees Vissers, Onur Mutlu
Publikováno v:
IEEE Transactions on Computers. :1-14
Autor:
Olivier J. Hénaff, Skanda Koppula, Evan Shelhamer, Daniel Zoran, Andrew Jaegle, Andrew Zisserman, João Carreira, Relja Arandjelović
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031198113
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::89a467bd31f24c2ea7fe285e51bf921c
https://doi.org/10.1007/978-3-031-19812-0_8
https://doi.org/10.1007/978-3-031-19812-0_8
Publikováno v:
IROS
Autonomous racing provides the opportunity to test safety-critical perception pipelines at their limit. This paper describes the practical challenges and solutions to applying state-of-the-art computer vision algorithms to build a low-latency, high-a
Autor:
Onur Mutlu, Juan Gómez Luna, Taha Shahroodi, Skanda Koppula, Nika Mansouri Ghiasi, Nandita Vijaykumar, Konstantinos Kanellopoulos, Roknoddin Azizi, Christina Giannoula
Publikováno v:
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
Important workloads, such as machine learning and graph analytics applications, heavily involve sparse linear algebra operations. These operations use sparse matrix compression as an effective means to avoid storing zeros and performing unnecessary c
Autor:
Skanda Koppula, Roknoddin Azizi, Lois Orosa, Onur Mutlu, Taha Shahroodi, Konstantinos Kanellopoulos, A. Giray Yaglikci
Publikováno v:
MICRO
The effectiveness of deep neural networks (DNN) in vision, speech, and language processing has prompted a tremendous demand for energy-efficient high-performance DNN inference systems. Due to the increasing memory intensity of most DNN workloads, mai
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5aedbbeddeb31a4e75b944240e7c8238
Publikováno v:
ICASSP
We demonstrate a network visualization technique to analyze the recurrent state inside the LSTMs/GRUs used commonly in language and acoustic models. Interpreting intermediate state and network activations inside end-to-end models remains an open chal
Publikováno v:
MIT web domain
ICASSP
ICASSP
Power-consumption in small devices is dominated by off-chip memory accesses, necessitating small models that can fit in on-chip memory. In the task of text-dependent speaker identification, we demonstrate a 16x byte-size reduction for state-of-art sm
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::01aef12767f08f5c6f68232c2217fc79
https://hdl.handle.net/1721.1/121168
https://hdl.handle.net/1721.1/121168