Zobrazeno 1 - 10
of 85
pro vyhledávání: '"Sjamaar, Reyer"'
Publikováno v:
Pure and Applied Mathematics Quarterly, Volume 19, Number 4, 2067--2131, 2023
We extend the Marsden-Weinstein reduction theorem and the Darboux-Moser-Weinstein theorem to symplectic Lie algebroids. We also obtain a coisotropic embedding theorem for symplectic Lie algebroids.
Comment: 42 pages, references added, errors in
Comment: 42 pages, references added, errors in
Externí odkaz:
http://arxiv.org/abs/2211.13288
We introduce geometric quantization for constant rank presymplectic structures with Riemannian null foliation and compact leaf closure space. We prove a quantization-commutes-with-reduction theorem in this context. Examples related to symplectic tori
Externí odkaz:
http://arxiv.org/abs/2209.13766
Publikováno v:
Int. Math. Res. Not. IMRN (2022), no. 18, 14034--14066
We show, under an orientation hypothesis, that a log symplectic manifold with simple normal crossing singularities has a stable almost complex structure, and hence is Spin$_c$. In the compact Hamiltonian case we prove that the index of the Spin$_c$ D
Externí odkaz:
http://arxiv.org/abs/2008.12728
Autor:
Lin, Yi, Sjamaar, Reyer
Publikováno v:
Indag. Math. (N.S.) 32 (2021), no.1, 121--150
We prove a Thom isomorphism theorem for differential forms in the setting of transverse Lie algebra actions on foliated manifolds and foliated vector bundles.
Comment: 29 pages. Contains material from first version of arXiv:1806.01908. Section 4
Comment: 29 pages. Contains material from first version of arXiv:1806.01908. Section 4
Externí odkaz:
http://arxiv.org/abs/2001.11848
Publikováno v:
Math. Z. 298 (2021), no.3-4, 1143--1173
Consider a Hamiltonian action of a compact connected Lie group on a conformal symplectic manifold. We prove a convexity theorem for the moment map under the assumption that the action is of Lee type, which establishes an analog of Kirwan's convexity
Externí odkaz:
http://arxiv.org/abs/1905.12703
Publikováno v:
Int. Math. Res. Not. IMRN (2021), no. 20, 15209--15300
We introduce the notion of a Hamiltonian action of an \'etale Lie group stack on an \'etale symplectic stack and establish versions of the Kirwan convexity theorem, the Meyer-Marsden-Weinstein symplectic reduction theorem, and the Duistermaat-Heckman
Externí odkaz:
http://arxiv.org/abs/1808.01003
Autor:
Lin, Yi, Sjamaar, Reyer
Publikováno v:
J. Geom. Phys.158 (2020), 103887, 25 pp
We prove localization and integration formulas for the equivariant basic cohomology of Riemannian foliations. As a corollary we obtain a Duistermaat-Heckman theorem for transversely symplectic foliations.
Comment: 35 pages. This revision has min
Comment: 35 pages. This revision has min
Externí odkaz:
http://arxiv.org/abs/1806.01908
Autor:
Lin, Yi, Sjamaar, Reyer
Publikováno v:
J. Symplectic Geom. 17 (2019), no. 4, 1159-1200
The convexity and Morse-theoretic properties of moment maps in symplectic geometry typically fail for presymplectic manifolds. We find a condition on presymplectic moment maps that prevents these failures. Our result applies for instance to Prato's q
Externí odkaz:
http://arxiv.org/abs/1706.00520
Autor:
Lin, Yi, Sjamaar, Reyer
Publikováno v:
In Indagationes Mathematicae February 2021 32(1):121-150
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.