Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Sjödin, Tomas"'
Autor:
Gardiner, Stephen J., Sjödin, Tomas
Kow, Larson, Salo and Shahgholian recently initiated the study of quadrature domains for the Helmholtz equation and developed an associated theory of partial balayage of measures. The present paper offers an alternative approach to partial balayage i
Externí odkaz:
http://arxiv.org/abs/2404.05552
The Bergman $p$-analytic content ($1\leq p<\infty $) of a planar domain $\Omega $ measures the $L^{p}(\Omega )$-distance between $\overline{z}$ and the Bergman space $A^{p}(\Omega )$ of holomorphic functions. It has a natural analogue in all dimensio
Externí odkaz:
http://arxiv.org/abs/1901.05868
This paper establishes a conjecture of Gustafsson and Khavinson, which relates the analytic content of a smoothly bounded domain in $\mathbb{R}^{N}$ to the classical isoperimetric inequality. The proof is based on a novel combination of partial balay
Externí odkaz:
http://arxiv.org/abs/1703.09922
Publikováno v:
Rev. Mat. Iberoam. 34 (2018), 1323-1360
We study the Dirichlet problem for p-harmonic functions on metric spaces with respect to arbitrary compactifications. A particular focus is on the Perron method, and as a new approach to the invariance problem we introduce Sobolev-Perron solutions. W
Externí odkaz:
http://arxiv.org/abs/1604.08731
Autor:
Sjödin, Tomas, Boukaras, Andreas
Syfte - Syftet med den här uppsatsen var att via befintlig litteratur undersöka vilka modeller som finns för att välja systemutvecklingsmetod. Vidare syftade uppsatsen till att testa modellerna på några av de vanligast förekommande utvecklings
Externí odkaz:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-168324
Autor:
Sjödin, Tomas
Let $(X,d_X,\mu)$ be a metric measure space where $X$ is locally compact and separable and $\mu$ is a Borel regular measure such that $0 <\mu(B(x,r)) <\infty$ for every ball $B(x,r)$ with center $x \in X$ and radius $r>0$. We define $\mathcal{X}$ to
Externí odkaz:
http://arxiv.org/abs/1504.07778
Autor:
Sjödin, Tomas
In this thesis, which consists of five papers (A,B,C,D,E), we are interested in questions related to quadrature domains. Among the problems studied are the possibility of changing the type of measure in a quadrature identity (from complex to real and
Externí odkaz:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-213
Publikováno v:
Indiana University Mathematics Journal, 2020 Jan 01. 69(4), 1231-1249.
Externí odkaz:
https://www.jstor.org/stable/26959459
Autor:
Shahgholian, Henrik, Sjödin, Tomas
Here we shall introduce the concept of harmonic balls/spheres in sub-domains of $\R^n$, through a mean value property for a sub-class of harmonic functions on such domains. In the complex plane, and for analytic functions, a similar concept fails to
Externí odkaz:
http://arxiv.org/abs/1105.0212