Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Sistko, Alexander"'
We classify pointed Hopf algebras of discrete corepresentation type over an algebraically closed field K with characteristic zero. For such algebras $H$, we explicitly determine the algebra structure up to isomorphism for the link indecomposable comp
Externí odkaz:
http://arxiv.org/abs/2211.00507
Publikováno v:
In Journal of Pure and Applied Algebra April 2024 228(4)
We give infinite triangularization and strict triangularization results for algebras of operators on infinite dimensional vector spaces. We introduce a class of algebras we call Ore-solvable algebras: these are similar to iterated Ore extensions but
Externí odkaz:
http://arxiv.org/abs/2007.12512
Autor:
Sistko, Alexander H.
Let $k$ be an algebraically-closed field, and let $B = kQ/I$ be a basic, finite-dimensional associative $k$-algebra with $n := \dim_kB < \infty$. Previous work shows that the collection of maximal subalgebras of $B$ carries the structure of a project
Externí odkaz:
http://arxiv.org/abs/1810.00806
Autor:
Sistko, Alexander H.
Let $k$ be an algebraically-closed field, and $B$ a unital, associative $k$-algebra with $n := \dim_kB < \infty$. For each $1 \le m \le n$, the collection of all $m$-dimensional subalgebras of $B$ carries the structure of a projective variety, which
Externí odkaz:
http://arxiv.org/abs/1809.09760
Autor:
Iovanov, Miodrag, Sistko, Alexander
We study maximal subalgebras of an arbitrary finite dimensional algebra over a field, and obtain full classification/description results of such algebras. This is done by first obtaining a complete classification in the semisimple case, and then lift
Externí odkaz:
http://arxiv.org/abs/1705.00762
Autor:
Iovanov, Miodrag C, Sistko, Alexander
We study the representation theory of the algebraic Toeplitz algebra $R={\mathbb K}\langle x,y\rangle/\langle xy-1\rangle$, give a few new structure and homological theorems, completely determine one-sided ideals and survey and re-obtain results from
Externí odkaz:
http://arxiv.org/abs/1603.00109
Autor:
JUN, JAIUNG, SISTKO, ALEXANDER
Publikováno v:
Nagoya Mathematical Journal; Sep2024, Vol. 255, p561-617, 57p
Autor:
Sistko, Alexander Harris
Publikováno v:
Theses and Dissertations.
Let $k$ be a field and $B$ a finite-dimensional, associative, unital $k$-algebra. For each $1 \le d \le \dim_kB$, let $\operatorname{AlgGr}_d(B)$ denote the projective variety of $d$-dimensional subalgebras of $B$, and let $\operatorname{Aut}_k(B)$ d
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.