Zobrazeno 1 - 10
of 93 953
pro vyhledávání: '"Sisson, A."'
Autor:
Hamilton, John Maxwell (AUTHOR) jhamilt@lsu.edu, Georgacopoulos, Christina (AUTHOR)
Publikováno v:
Intelligence & National Security. Oct2021, Vol. 36 Issue 6, p881-897. 17p.
C.H. Sisson was born in Bristol in 1914. To celebrate his centenary, this Reader includes a generous selection of his poems, translations and essays. The poems are drawn from all periods of Sisson's writing life, from the darkly satirical work of the
Autor:
Sisson, Philip1 psisson@gwu.edu
Publikováno v:
European Conference on Knowledge Management. 2023, Vol. 24 Issue 2, p1219-1227. 9p.
Autor:
Gardner, Kevin J.1
Publikováno v:
Religion & the Arts. Sep2007, Vol. 11 Issue 3/4, p406-435. 30p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
de Amorim, William E. R., Sisson, Scott A., Rodrigues, T., Nott, David J., Rodrigues, Guilherme S.
Positional Encoder Graph Neural Networks (PE-GNNs) are a leading approach for modeling continuous spatial data. However, they often fail to produce calibrated predictive distributions, limiting their effectiveness for uncertainty quantification. We i
Externí odkaz:
http://arxiv.org/abs/2409.18865
Calibration ensures that predicted uncertainties align with observed uncertainties. While there is an extensive literature on recalibration methods for univariate probabilistic forecasts, work on calibration for multivariate forecasts is much more li
Externí odkaz:
http://arxiv.org/abs/2409.10855
Symbolic data analysis (SDA) aggregates large individual-level datasets into a small number of distributional summaries, such as random rectangles or random histograms. Inference is carried out using these summaries in place of the original dataset,
Externí odkaz:
http://arxiv.org/abs/2408.04419
Max-stable processes serve as the fundamental distributional family in extreme value theory. However, likelihood-based inference methods for max-stable processes still heavily rely on composite likelihoods, rendering them intractable in high dimensio
Externí odkaz:
http://arxiv.org/abs/2407.13958
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.