Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Sissokho, P."'
Autor:
Chebolu, Sunil K., Sissokho, Papa A.
A vector $(v_{1}, v_{2}, \cdots, v_{d})$ in $\mathbb{Z}_n^{d}$ is said to be a zero-sum-free $d$-tuple if there is no non-empty subset of its components whose sum is zero in $\mathbb{Z}_n$. We denote the cardinality of this collection by $\alpha_n^d$
Externí odkaz:
http://arxiv.org/abs/2201.01714
Autor:
Sissokho, Papa Amar
Let $a_1,\ldots,a_n$ and $b_1,\ldots,b_m$ be fixed positive integers, and let ${\mathcal S}$ denote the set of all nonnegative integer solutions of the equation $x_1a_1+\ldots +x_na_n=y_1b_1+\ldots +y_mb_m$. A solution $(x_1,\ldots,x_n,y_1,\ldots,y_m
Externí odkaz:
http://arxiv.org/abs/2108.05886
Autor:
Nastase, Esmeralda, Sissokho, Papa
Publikováno v:
Discrete Math. 340 (2017), 1481-1487
Let $n$ and $t$ be positive integers with $t
Externí odkaz:
http://arxiv.org/abs/1606.09208
Autor:
Nastase, E., Sissokho, P.
Let $V=V(n,q)$ denote the vector space of dimension $n$ over the finite field with $q$ elements. A subspace partition ${\mathcal P}$ of $V$ is a collection of nontrivial subspaces of $V$ such that each nonzero vector of $V$ is in exactly one subspace
Externí odkaz:
http://arxiv.org/abs/1606.00120
Autor:
Nastase, Esmeralda, Sissokho, Papa
Let $n$ and $t$ be positive integers with $t
Externí odkaz:
http://arxiv.org/abs/1605.04824
Let $t$ and $k$ be a positive integers, and let $I_k=\{i\in \mathbb{Z}:\; -k\leq i\leq k\}$. Let $\mathsf{s}'_t(I_k)$ be the smallest positive integer $\ell$ such that every zero-sum sequence $S$ over $I_k$ of length $|S|\ge \ell$ contains a zero-sum
Externí odkaz:
http://arxiv.org/abs/1603.03978
Let $n>1$ and $k>0$ be fixed integers. A matrix is said to be level if all its column sums are equal. A level matrix with $m$ rows is called reducible if we can delete $j$ rows, $0
Externí odkaz:
http://arxiv.org/abs/1401.5868
Autor:
Sissokho, Papa A.
A zero-sum sequence over ${\mathbb Z}$ is a sequence with terms in ${\mathbb Z}$ that sum to $0$. It is called minimal if it does not contain a proper zero-sum subsequence. Consider a minimal zero-sum sequence over ${\mathbb Z}$ with positive terms $
Externí odkaz:
http://arxiv.org/abs/1401.0715
A zero-sum sequence of integers is a sequence of nonzero terms that sum to 0. Let $k>0$ be an integer and let $[-k,k]$ denote the set of all nonzero integers between $-k$ and $k$. Let $\ell(k)$ be the smallest integer $\ell$ such that any zero-sum se
Externí odkaz:
http://arxiv.org/abs/1212.2690
A subspace partition $\Pi$ of $V=V(n,q)$ is a collection of subspaces of $V$ such that each 1-dimensional subspace of $V$ is in exactly one subspace of $\Pi$. The size of $\Pi$ is the number of its subspaces. Let $\sigma_q(n,t)$ denote the minimum si
Externí odkaz:
http://arxiv.org/abs/1104.2706