Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Siqveland, Arvid"'
Autor:
Siqveland, Arvid
We give a definition of associative schemes, schemes of associative rings, over a field $k,$ using the definition of completion of an associative $k$-algebra in a finite set of simple modules. We start by giving a weaker but sufficient definition of
Externí odkaz:
http://arxiv.org/abs/2410.17703
Autor:
Siqveland, Arvid
We prove that for an arbitrary field $k,$ a complete, associative $k^r$-algebra $\hat H$ augmented over $k^r$ has exactly $r$ maximal two-sided ideals and deserves the name $r$-pointed. If $A$ is any $k$-algebra, $M=\{M_i\}_{i=1}^r$ is a family of si
Externí odkaz:
http://arxiv.org/abs/2410.16819
Autor:
Siqveland, Arvid
We define the completion of an associative algebra $A$ in a set $M=\{M_1,\dots,M_r\}$ of $r$ right $A$-modules in such a way that if $\mathfrak a\subseteq A$ is an ideal in a commutative ring $A$ the completion $A$ in the (right) module $A/\mathfrak
Externí odkaz:
http://arxiv.org/abs/2408.01034
Autor:
Siqveland, Arvid
We state results from noncommutative deformation theory of modules over an associative $k$-algebra $A,$ $k$ a field, necessary for this work. We define a set of $A$-modules $\operatorname{aSpec}A$ containing the simple modules, whose elements we call
Externí odkaz:
http://arxiv.org/abs/2302.13843
Autor:
Eriksen, Eivind, Siqveland, Arvid
Publikováno v:
J. Algebra 547 (2020), 162-172
We consider the algebra $\mathcal O(\mathsf M)$ of observables and the (formally) versal morphism $\eta: A \to \mathcal O(\mathsf M)$ defined by the noncommutative deformation functor $\mathsf{Def}_{\mathsf M}$ of a family $\mathsf M = \{ M_1, \dots,
Externí odkaz:
http://arxiv.org/abs/1702.07645
Autor:
Eriksen, Eivind, Siqveland, Arvid
Publikováno v:
In Journal of Algebra 1 April 2020 547:162-172
Autor:
Siqveland, Arvid
In this this paper we introduce entanglement among the points in a non-commutative scheme, in addition to the tangent directions. A diagram of $A$-modules is a pair $\uc=(|\uc|,\Gamma)$ where $|\uc|={V_1,...,V_r}$ is a set of $A$-modules, and $\Gamma
Externí odkaz:
http://arxiv.org/abs/1204.3303
Autor:
Siqveland, Arvid
The theory of generalized matric Massey products has been applied for some time to $A$-modules $M$, $A$ a $k$-algebra. The main application is to compute the local formal moduli $\hat{H}_M$, isomorphic to the local ring of the moduli of $A$-modules.
Externí odkaz:
http://arxiv.org/abs/math/0603425
Autor:
Nortvedt, Guri A., Siqveland, Arvid
Publikováno v:
Nortvedt, Guri A. Siqveland, Arvid . Are Beginning Calculus and Engineering Students Adequately Prepared for Higher Education? An Assessment of Students’ Basic Mathematical Knowledge. International jo
International jo
International jo
Externí odkaz:
http://hdl.handle.net/10852/71075
https://www.duo.uio.no/bitstream/handle/10852/71075/5/postprint%2BNortvedt%2BSiqveland.pdf
https://www.duo.uio.no/bitstream/handle/10852/71075/5/postprint%2BNortvedt%2BSiqveland.pdf