Zobrazeno 1 - 10
of 2 429
pro vyhledávání: '"Single-cell mRNA sequencing"'
Publikováno v:
Veterinary Medicine and Science, Vol 10, Iss 1, Pp n/a-n/a (2024)
Abstract Testicular tumours are zoonoses that can occur in not only human, but other animals, include giant pandas. A middle‐aged male giant panda named Fufu was diagnosed with a testicular tumour and underwent surgery to remove the entire left tes
Externí odkaz:
https://doaj.org/article/dd0a2d5260af498daf393a7f7f94b9ec
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wenjie Tang, Yifan Zhong, Yusen Wei, Zhaoxi Deng, Jiangdi Mao, Jingliang Liu, Teresa G. Valencak, Jianxin Liu, Heping Xu, Haifeng Wang
Publikováno v:
BMC Biology, Vol 20, Iss 1, Pp 1-24 (2022)
Abstract Background In mammals, transitioning from sole milk uptake to the intake of solid feed results in dramatic developmental changes in intestinal function and immunological status. In fact, weaning stress is often accompanied by intestinal infl
Externí odkaz:
https://doaj.org/article/82fb92d2851f4c48ba763847a9224635
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Probst, Victoria1 (AUTHOR), Simonyan, Arman1 (AUTHOR), Pacheco, Felix1 (AUTHOR), Guo, Yuliu1 (AUTHOR), Nielsen, Finn Cilius1 (AUTHOR), Bagger, Frederik Otzen1 (AUTHOR) frederik.otzen.bagger@regionh.dk
Publikováno v:
BMC Genomics. 12/29/2022, Vol. 23 Issue 1, p1-15. 15p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Victoria Probst, Arman Simonyan, Felix Pacheco, Yuliu Guo, Finn Cilius Nielsen, Frederik Otzen Bagger
Publikováno v:
BMC Genomics, Vol 23, Iss 1, Pp 1-15 (2022)
Abstract Background Single cell mRNA sequencing technologies have transformed our understanding of cellular heterogeneity and identity. For sensitive discovery or clinical marker estimation where high transcript capture per cell is needed only plate-
Externí odkaz:
https://doaj.org/article/3fc2aef8910241feb171873744691636
Autor:
Simon F; Department of Biology, New York University, New York, NY 10003, USA., Holguera I; Department of Biology, New York University, New York, NY 10003, USA., Chen YC; Department of Biology, New York University, New York, NY 10003, USA., Malin J; Department of Biology, New York University, New York, NY 10003, USA., Valentino P; Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada., Erclik T; Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada., Desplan C; Department of Biology, New York University, New York, NY 10003, USA.
Publikováno v:
BioRxiv : the preprint server for biology [bioRxiv] 2024 Feb 05. Date of Electronic Publication: 2024 Feb 05.
Autor:
Mingxia Zhang, Yuan Zou, Xing Xu, Xuebing Zhang, Mingxuan Gao, Jia Song, Peifeng Huang, Qin Chen, Zhi Zhu, Wei Lin, Richard N. Zare, Chaoyong Yang
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
Single-cell RNA-seq can reveal accurate and precise cell types and states. Here the authors present an scRNA-seq platform, Paired-seq, which uses differential flow resistance to achieve 95% cell utilisation efficiency for improved cell-free RNA remov
Externí odkaz:
https://doaj.org/article/2803c5a6e28e40b48cbe7529ec370858
Publikováno v:
BMC Bioinformatics, Vol 20, Iss 1, Pp 1-9 (2019)
Abstract Background Unsupervised machine learning methods (deep learning) have shown their usefulness with noisy single cell mRNA-sequencing data (scRNA-seq), where the models generalize well, despite the zero-inflation of the data. A class of neural
Externí odkaz:
https://doaj.org/article/3e19d3420d44410db46d089f55470b1e