Zobrazeno 1 - 10
of 95
pro vyhledávání: '"Single-cell clustering"'
Publikováno v:
BMC Bioinformatics, Vol 25, Iss S2, Pp 1-20 (2024)
Abstract Background With the advance in single-cell RNA sequencing (scRNA-seq) technology, deriving inherent biological system information from expression profiles at a single-cell resolution has become possible. It has been known that network modeli
Externí odkaz:
https://doaj.org/article/f8c8af8d92f34b618ab172c9c7508f61
Autor:
Yisong Wang, Mingzhi Wang
Publikováno v:
IEEE Access, Vol 12, Pp 60222-60233 (2024)
The emergence of single-cell RNA sequencing (scRNA-seq) has brought to light the critical need for scrutinizing transcriptomes at the individual cellular level with unparalleled precision. A pivotal aspect of scRNA-seq data analysis involves cell ide
Externí odkaz:
https://doaj.org/article/4916a0d14dbe4ae0881390d6d66595fb
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Frontiers in Genetics, Vol 14 (2023)
Identifying different types of cells in scRNA-seq data is a critical task in single-cell data analysis. In this paper, we propose a method called ProgClust for the decomposition of cell populations and detection of rare cells. ProgClust represents th
Externí odkaz:
https://doaj.org/article/e02ba0763a5649f997c721c624067099
Autor:
Yilin Yu, Juntao Liu
Publikováno v:
Mathematics, Vol 11, Iss 17, p 3785 (2023)
Single-cell clustering facilitates the identification of different cell types, especially the identification of rare cells. Preprocessing and dimensionality reduction are the two most commonly used data-processing methods and are very important for s
Externí odkaz:
https://doaj.org/article/f30a467c69254e4abf47ddf531f1ba97
Autor:
Junpeng Zhang, Lin Liu, Taosheng Xu, Wu Zhang, Chunwen Zhao, Sijing Li, Jiuyong Li, Nini Rao, Thuc Duy Le
Publikováno v:
BMC Bioinformatics, Vol 22, Iss 1, Pp 1-19 (2021)
Abstract Background Existing computational methods for studying miRNA regulation are mostly based on bulk miRNA and mRNA expression data. However, bulk data only allows the analysis of miRNA regulation regarding a group of cells, rather than the miRN
Externí odkaz:
https://doaj.org/article/b77154efc5954fb7be9a514def7e611a
Publikováno v:
Genome Biology, Vol 22, Iss 1, Pp 1-15 (2021)
Abstract In any ‘omics study, the scale of analysis can dramatically affect the outcome. For instance, when clustering single-cell transcriptomes, is the analysis tuned to discover broad or specific cell types? Likewise, protein communities reveale
Externí odkaz:
https://doaj.org/article/f2b38dc2db7d4aae9e73eee2d05d6b63
Publikováno v:
BMC Bioinformatics, Vol 21, Iss 1, Pp 1-13 (2020)
Abstract Background Advances in single-cell RNA-seq technology have led to great opportunities for the quantitative characterization of cell types, and many clustering algorithms have been developed based on single-cell gene expression. However, we f
Externí odkaz:
https://doaj.org/article/cc6587798d5640b9996256844a3d5ca5