Zobrazeno 1 - 10
of 251
pro vyhledávání: '"Singh Udaya"'
Autor:
Singh Udaya P.
Publikováno v:
Journal of Mechanical Engineering, Vol 71, Iss 2, Pp 317-328 (2021)
The objective of present theoretical analysis is to study the combined effects of surface roughness and fluid inertia (including the inertia of the fluid in the supply region) on the steady performance of stepped circular hydrostatic thrust bearings
Externí odkaz:
https://doaj.org/article/3631869f4da74ee5b338006a8c882a77
Autor:
Singh Ramendra K, Singh Udaya
Publikováno v:
Retrovirology, Vol 8, Iss Suppl 2, p P82 (2011)
Externí odkaz:
https://doaj.org/article/715c90a0d2d243d0909662d0090cd52e
Autor:
Borgohain, Pritom, Shakya, Anshul, Ghosh, Surajit Kumar, Gogoi, Neelutpal, Patgiri, Saurav Jyoti, Bhowmick, Ipsita Pal, Bhattacharyya, Dibya Ranjan, Singh, Udaya Pratap, Bhat, Hans Raj
Publikováno v:
In Experimental Parasitology June 2024 261
Autor:
Singh, Udaya Pratap
A new technique is presented to solve a class of linear boundary value problems (BVP). Technique is primarily based on an operational matrix developed from a set of modified Bernoulli polynomials. The new set of polynomials is an orthonormal set obta
Externí odkaz:
http://arxiv.org/abs/2008.05599
Autor:
Singh, Udaya Pratap
In this work, a new technique has been presented to find approximate solution of linear integro-differential equations. The method is based on modified orthonormal Bernoulli polynomials and an operational matrix thereof. The method converts a given i
Externí odkaz:
http://arxiv.org/abs/2008.00900
Autor:
Singh, Udaya Pratap
This work investigates a new approach to find closed form analytical approximate solution of linear initial value problems. Classical Bernoulli polynomials have been used to derive a finite set of orthonormal polynomials and a finite operational matr
Externí odkaz:
http://arxiv.org/abs/2007.12409
Autor:
Singh, Udaya Pratap
In this work, a new approach has been developed to obtain numerical solution of linear Volterra type integral equations by obtaining asymptotic approximation to solutions. Using the classical Bernoulli polynomials, a set of orthonormal polynomials ha
Externí odkaz:
http://arxiv.org/abs/2007.10814
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Molecular Structure 15 December 2023 1294 Part 2
Autor:
Saha, Ashmita, Choudhury, Ayesha Aktar Khanam, Adhikari, Nayana, Ghosh, Surajit Kumar, Shakya, Anshul, Patgiri, Saurav Jyoti, Singh, Udaya Pratap, Bhat, Hans Raj
Publikováno v:
In Experimental Parasitology July 2023 250