Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Sinai, Yakov G"'
Autor:
Cellarosi, Francesco, Sinai, Yakov G.
We construct a natural invariant measure concentrated on the set of square-free numbers, and invariant under the shift. We prove that the corresponding dynamical system is isomorphic to a translation on a compact, Abelian group. This implies that thi
Externí odkaz:
http://arxiv.org/abs/1112.4691
Autor:
Cellarosi, Francesco, Sinai, Yakov G.
We present a limit theorem describing the behavior of a probabilistic model for square-free numbers. The limiting distribution has a density that comes from the Dickman-De Bruijn function and is constant on the interval $[0,1]$. We also provide estim
Externí odkaz:
http://arxiv.org/abs/1010.0035
Autor:
Sinai, Yakov G., Vinogradov, Ilya
Publikováno v:
Journal of Statistical Physics, Volume 136, Number 4 / August, 2009
In this paper we consider the recurrent equation $$\Lambda_{p+1}=\frac1p\sum_{q=1}^pf\bigg(\frac{q}{p+1}\bigg)\Lambda_{q}\Lambda_{p+1-q}$$ for $p\ge 1$ with $f\in C[0,1]$ and $\Lambda_1=y>0$ given. We give conditions on $f$ that guarantee the existen
Externí odkaz:
http://arxiv.org/abs/0812.0776
Autor:
Sinai, Yakov G., Ulcigrai, Corinna
We consider Birkhoff sums of functions with a singularity of type 1/x over rotations and prove the following limit theorem. Let $S_N= S_N(\alpha,x)$ be the N^th non-renormalized Birkhoff sum, where $x in [0,1)$ is the initial point, $\alpha\in [0,1)$
Externí odkaz:
http://arxiv.org/abs/0710.1287
Autor:
Sinai, Yakov G., Ulcigrai, Corinna
In this paper we prove the following renewal-type limit theorem. Given an irrational $\alpha$ in (0,1) and R>0, let $q_{n_R}$ be the first denominator of the convergents of $\alpha$ which exceeds R. The main result in the paper is that the ratio $q_{
Externí odkaz:
http://arxiv.org/abs/0710.1283
Autor:
Kontorovich, Alex V., Sinai, Yakov G.
Publikováno v:
Bulletin of the Brazilian Mathematical Society, Volume 33, Issue 2, Jul 2002, Pages 213 - 224
The (3x+1)-Map, T, acts on the set, Pi, of positive integers not divisible by 2 or 3. It is defined by T(x) = (3x+1)/2^k, where k is the largest integer for which T(x) is an integer. The (3x+1)-Conjecture asks if for every x in Pi there exists an int
Externí odkaz:
http://arxiv.org/abs/math/0601622
Autor:
Li, Dong, Sinai, Yakov G.
Publikováno v:
In Advances in Mathematics 2012 229(3):1976-1999
Autor:
Zass, Alexander, Zagrebnov, Valentin, Sukiasyan, Hayk, Melkonyan, Tatev, Rafler, Mathias, Poghosyan, Suren, Zessin, Hans, Piatnitski, Andrey, Zhizhina, Elena, Pechersky, Eugeny, Pirogov, Sergei, Yambartsev, Anatoly, Mazzonetto, Sara, Lykov, Alexander, Malyshev, Vadim, Khachatryan, Linda, Nahapetian, Boris, Jursenas, Rytis, Jansen, Sabine, Tsagkarogiannis, Dimitrios, Kuna, Tobias, Kolesnikov, Leonid, Hryniv, Ostap, Wallace, Clare, Houdebert, Pierre, Figari, Rodolfo, Teta, Alessandro, Boldrighini, Carlo, Frigio, Sandro, Maponi, Pierluigi, Pellegrinotti, Alessandro, Sinai, Yakov G.
The XI international conference Stochastic and Analytic Methods in Mathematical Physics was held in Yerevan 2 – 7 September 2019 and was dedicated to the memory of the great mathematician Robert Adol’fovich Minlos, who passed away in January 2018
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::81749e8ad6464c3ac9bd2f9181ac74c6
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/45919
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/45919