Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Simone Naldi"'
Autor:
Karine Pallier, Olivier Prot, Simone Naldi, Francisco Silva, Thierry Denis, Olivier Giry, Sophie Leobon, Elise Deluche, Nicole Tubiana-Mathieu
Publikováno v:
Cancer Informatics, Vol 22 (2023)
Background: The Regional Basis of Solid Tumor (RBST), a clinical data warehouse, centralizes information related to cancer patient care in 5 health establishments in 2 French departments. Purpose: To develop algorithms matching heterogeneous data to
Externí odkaz:
https://doaj.org/article/96e368bfb77740f8b0cc8c611be87eaf
Autor:
Simone Naldi, Vincent Neiger
Publikováno v:
ISSAC
Let $f_1,\ldots,f_m$ be elements in a quotient $R^n / N$ which has finite dimension as a $K$-vector space, where $R = K[X_1,\ldots,X_r]$ and $N$ is an $R$-submodule of $R^n$. We address the problem of computing a Gr\"obner basis of the module of syzy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::82ca9f60a211a4440dee4a5ebc2b70a8
https://hal-unilim.archives-ouvertes.fr/hal-02480240v2/document
https://hal-unilim.archives-ouvertes.fr/hal-02480240v2/document
Autor:
Rainer Sinn, Simone Naldi
We revisit facial reduction from the point of view of projective geometry. This leads us to a homogenization strategy in conic programming that eliminates the phenomenon of weak infeasibility. For semidefinite programs (and others), this yields infea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::30c36775f64f46800332c4e580654433
https://hal.archives-ouvertes.fr/hal-02436204/document
https://hal.archives-ouvertes.fr/hal-02436204/document
Publikováno v:
Applicable Algebra in Engineering, Communication and Computing
Applicable Algebra in Engineering, Communication and Computing, 2020, 31, pp.101-133. ⟨10.1007/s00200-019-00396-w⟩
Applicable Algebra in Engineering, Communication and Computing, Springer Verlag, 2020, 31, pp.101-133. ⟨10.1007/s00200-019-00396-w⟩
Applicable Algebra in Engineering, Communication and Computing, 2020, 31, pp.101-133. ⟨10.1007/s00200-019-00396-w⟩
Applicable Algebra in Engineering, Communication and Computing, Springer Verlag, 2020, 31, pp.101-133. ⟨10.1007/s00200-019-00396-w⟩
We consider $m \times s$ matrices (with $m\geq s$) in a real affine subspace of dimension $n$. The problem of finding elements of low rank in such spaces finds many applications in information and systems theory, where low rank is synonymous of struc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::33acdc8ff3dd1c17063445c8bfecdefb
https://hal.science/hal-01159210v2/document
https://hal.science/hal-01159210v2/document
Publikováno v:
Pacific Journal of Mathematics
Pacific Journal of Mathematics, Mathematical Sciences Publishers, 2019, 303 (1), pp.243-263. ⟨10.2140/pjm.2019.303.243⟩
Pacific Journal of Mathematics, Mathematical Sciences Publishers, 2019, 303 (1), pp.243-263. ⟨10.2140/pjm.2019.303.243⟩
We describe a new method for constructing a spectrahedral representation of the hyperbolicity region of a hyperbolic curve in the real projective plane. As a consequence, we show that if the curve is smooth and defined over the rational numbers, then
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3ba29cdc3d7c1d946733897574c89cf7
https://hal.archives-ouvertes.fr/hal-02436202/document
https://hal.archives-ouvertes.fr/hal-02436202/document
Publikováno v:
Journal of Symbolic Computation
Journal of Symbolic Computation, Elsevier, 2021, 104, pp.942-959. ⟨10.1016/j.jsc.2020.11.001⟩
ISSAC 2018-43rd International Symposium on Symbolic and Algebraic Computation
ISSAC 2018-43rd International Symposium on Symbolic and Algebraic Computation, Jul 2018, New York City, United States. 17p., ⟨10.1145/3208976.3209022⟩
ISSAC
Journal of Symbolic Computation, 2021, 104, pp.942-959. ⟨10.1016/j.jsc.2020.11.001⟩
Journal of Symbolic Computation, Elsevier, 2018, 17p
Journal of Symbolic Computation, Elsevier, 2021, 104, pp.942-959. ⟨10.1016/j.jsc.2020.11.001⟩
ISSAC 2018-43rd International Symposium on Symbolic and Algebraic Computation
ISSAC 2018-43rd International Symposium on Symbolic and Algebraic Computation, Jul 2018, New York City, United States. 17p., ⟨10.1145/3208976.3209022⟩
ISSAC
Journal of Symbolic Computation, 2021, 104, pp.942-959. ⟨10.1016/j.jsc.2020.11.001⟩
Journal of Symbolic Computation, Elsevier, 2018, 17p
Given symmetric matrices $A_0, A_1, \ldots, A_n$ of size $m$ with rational entries, the set of real vectors $x = (x_1, \ldots, x_n)$ such that the matrix $A_0 + x_1 A_1 + \cdots + x_n A_n$ has non-negative eigenvalues is called a spectrahedron. Minim
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dc6bd0f05839f76df5e3f8010ab6f6e0
http://arxiv.org/abs/1802.02834
http://arxiv.org/abs/1802.02834
Autor:
Simone Naldi
Publikováno v:
Discrete and Computational Geometry
Discrete and Computational Geometry, Springer Verlag, 2014, 51, pp.559-568. ⟨10.1007/s00454-014-9588-3⟩
Discrete and Computational Geometry, Springer Verlag, 2014, 51, pp.559-568. ⟨10.1007/s00454-014-9588-3⟩
In 1888 Hilbert showed that every nonnegative homogeneous polynomial with real coefficients of degree $2d$ in $n$ variables is a sum of squares if and only if $d=1$ (quadratic forms), $n=2$ (binary forms) or $(n,d)=(3,2)$ (ternary quartics). In these
Publikováno v:
SIAM Journal on Optimization
SIAM Journal on Optimization, 2016, 26 (4), pp.2512-2539. ⟨10.1137/15M1036543⟩
SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2016, 26 (4), pp.2512-2539. ⟨10.1137/15M1036543⟩
SIAM Journal on Optimization, 2016, 26 (4), pp.2512-2539. ⟨10.1137/15M1036543⟩
SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2016, 26 (4), pp.2512-2539. ⟨10.1137/15M1036543⟩
Let $A(x)=A\_0+x\_1A\_1+...+x\_nA\_n$ be a linear matrix, or pencil, generated by given symmetric matrices $A\_0,A\_1,...,A\_n$ of size $m$ with rational entries. The set of real vectors x such that the pencil is positive semidefinite is a convex sem
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c6dfb4bf1a9f91e035483b4b78988bf1
https://hal.science/hal-01184320
https://hal.science/hal-01184320
Autor:
Simone Naldi
Publikováno v:
ISSAC
Journal of Symbolic Computation
Journal of Symbolic Computation, Elsevier, 2018, 85, pp.206-223. ⟨10.1016/j.jsc.2017.07.009⟩
Journal of Symbolic Computation
Journal of Symbolic Computation, Elsevier, 2018, 85, pp.206-223. ⟨10.1016/j.jsc.2017.07.009⟩
We consider the problem of minimizing a linear function over an affine section of the cone of positive semidefinite matrices, with the additional constraint that the feasible matrix has prescribed rank. When the rank constraint is active, this is a n
Autor:
Daniel Plaumann, Simone Naldi
Publikováno v:
Journal of Algebra and Its Applications
Journal of Algebra and Its Applications, World Scientific Publishing, 2018, 17 (10), pp.1850192. ⟨10.1142/S021949881850192X⟩
Journal of Algebra and Its Applications, World Scientific Publishing, 2018, 17 (10), pp.1850192. ⟨10.1142/S021949881850192X⟩
Hyperbolic programming is the problem of computing the infimum of a linear function when restricted to the hyperbolicity cone of a hyperbolic polynomial, a generalization of semidefinite programming. We propose an approach based on symbolic computati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38f3067e07ac2de548f01385246cb5ba