Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Simone Di Marino"'
Autor:
Simone Di Marino, Filippo Santambrogio
Publikováno v:
Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 39:1485-1517
Publikováno v:
Comptes Rendus. Mathématique. 358:817-825
We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti-
Publikováno v:
The Journal of Geometric Analysis. 31:7621-7685
We show that, given a metric space$$(\mathrm{Y},\textsf {d} )$$(Y,d)of curvature bounded from above in the sense of Alexandrov, and a positive Radon measure$$\mu $$μon$$\mathrm{Y}$$Ygiving finite mass to bounded sets, the resulting metric measure sp
We construct a regular random projection of a metric space onto a closed doubling subset and use it to linearly extend Lipschitz and $C^1$ functions. This way we prove more directly a result by Lee and Naor and we generalize the $C^1$ extension theor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3baa614baf2c6d85173f8c9e1fac974d
http://hdl.handle.net/11567/1037241
http://hdl.handle.net/11567/1037241
Autor:
Simone Di Marino, Augusto Gerolin
Publikováno v:
Journal of Scientific Computing, 85(2):27, 1-28. Springer
Marino, S D & Gerolin, A 2020, ' An Optimal Transport Approach for the Schrödinger Bridge Problem and Convergence of Sinkhorn Algorithm ', Journal of Scientific Computing, vol. 85, no. 2, 27, pp. 1-28 . https://doi.org/10.1007/s10915-020-01325-7
Journal of Scientific Computing
Marino, S D & Gerolin, A 2020, ' An Optimal Transport Approach for the Schrödinger Bridge Problem and Convergence of Sinkhorn Algorithm ', Journal of Scientific Computing, vol. 85, no. 2, 27, pp. 1-28 . https://doi.org/10.1007/s10915-020-01325-7
Journal of Scientific Computing
This paper exploit the equivalence between the Schrödinger Bridge problem (Léonard in J Funct Anal 262:1879–1920, 2012; Nelson in Phys Rev 150:1079, 1966; Schrödinger in Über die umkehrung der naturgesetze. Verlag Akademie der wissenschaften in
The intent of this short note is to extend real valued Lipschitz functions on metric spaces, while locally preserving the asymptotic Lipschitz constant. We then apply this results to give a simple and direct proof of the fact that Sobolev spaces on m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::851e1a95d15094cf1089db659eb103fc
Publikováno v:
Mathematical Models and Methods in Applied Sciences
Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2019
Mathematical Models and Methods in Applied Sciences, 2019
Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2019
Mathematical Models and Methods in Applied Sciences, 2019
We propose a new viewpoint on variational mean-field games with diffusion and quadratic Hamiltonian. We show the equivalence of such mean-field games with a relative entropy minimization at the level of probabilities on curves. We also address the ti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7cca18e62a6c04ffc80ef8dc34a88ae0
http://hdl.handle.net/11567/977468
http://hdl.handle.net/11567/977468
We provide sharp conditions for the finiteness and the continuity of multimarginal optimal transport with repulsive cost, expressed in terms of a suitable concentration property of the measure. To achieve this result, we analyze the Kantorovich poten
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d4eb19dcb3d18a72ae6864e0a3eedab3
http://hdl.handle.net/11567/977441
http://hdl.handle.net/11567/977441
Autor:
Simone Di Marino, Lénaïc Chizat
Publikováno v:
ESAIM: Control, Optimisation and Calculus of Variations
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2020
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2020
In this paper, we characterize a degenerate PDE as the gradient flow in the space of nonnegative measures endowed with an optimaltransport-growthmetric. The PDE of concern, of Hele-Shaw type, was introduced by Perthameet. al. as a mechanical model fo
Autor:
Simone Di Marino, Jean Louet
Publikováno v:
SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis, In press, 50 (4), pp.3451-3477. ⟨10.1137/17M1123523⟩
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, In press, 50 (4), pp.3451-3477. ⟨10.1137/17M1123523⟩
SIAM Journal on Mathematical Analysis, In press, 50 (4), pp.3451-3477. ⟨10.1137/17M1123523⟩
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, In press, 50 (4), pp.3451-3477. ⟨10.1137/17M1123523⟩
International audience; We study the entropic regularization of the optimal transport problem in dimension 1 when the cost function is the distance c(x, y) = |y − x|. The selected plan at the limit is, among those which are optimal for the non-pena
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::90cb53d1a098f270a429857bd7f686e1
https://hal.science/hal-01498732
https://hal.science/hal-01498732