Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Simone Creo"'
Publikováno v:
Fractal and Fractional, Vol 7, Iss 6, p 479 (2023)
In this study, we consider fractional-in-time Venttsel’ problems in fractal domains of the Koch type. Well-posedness and regularity results are given. In view of numerical approximation, we consider the associated approximating pre-fractal problems
Externí odkaz:
https://doaj.org/article/540b5fac79834f6e96941988e9e71eea
Publikováno v:
Fractal and Fractional; Volume 7; Issue 6; Pages: 479
In this study, we consider fractional-in-time Venttsel’ problems in fractal domains of the Koch type. Well-posedness and regularity results are given. In view of numerical approximation, we consider the associated approximating pre-fractal problems
Autor:
Simone Creo
Publikováno v:
Zeitschrift für Analysis und ihre Anwendungen. 40:401-424
We consider a quasi-linear homogenization problem in a two-dimensional pre-fractal domain $\Omega_n$, for $n\in\mathbb{N}$, surrounded by thick fibers of amplitude $\varepsilon$. We introduce a sequence of "pre-homogenized" energy functionals and we
Publikováno v:
Fractional Calculus and Applied Analysis. 23:1416-1430
We consider parabolic nonlocal Venttsel' problems in polygonal and piecewise smooth two-dimensional domains and study existence, uniqueness and regularity in (anisotropic) weighted Sobolev spaces of the solution.
14 pages, 1 figure. arXiv admin
14 pages, 1 figure. arXiv admin
Publikováno v:
Journal of Evolution Equations. 20:109-139
We study the asymptotic behavior of anomalous fractional diffusion processes in bad domains via the convergence of the associated energy forms. We introduce the associated Robin–Venttsel’ problems for the regional fractional Laplacian. We provide
Autor:
Simone Creo, Maria Rosaria Lancia
Publikováno v:
Nonlinear Differential Equations and Applications NoDEA. 28
We study a nonlocal Robin–Venttsel’-type problem for the regional fractionalp-Laplacian in an extension domain$$\Omega $$Ωwith boundary ad-set. We prove existence and uniqueness of a strong solution via a semigroup approach. Markovianity and ult
Publikováno v:
Fractals in Engineering: Theoretical Aspects and Numerical Approximations ISBN: 9783030618025
We study a Stokes flow in a cylindrical-type fractal domain with homogeneous Dirichlet boundary conditions. We consider its numerical approximation by mixed methods: finite elements in space and finite differences in time. We introduce a suitably ref
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b629a5bb158915216d076c000e8037e8
https://doi.org/10.1007/978-3-030-61803-2_2
https://doi.org/10.1007/978-3-030-61803-2_2
Autor:
Simone Creo, Valerio Regis Durante
In this paper we study a quasi-linear evolution equation with nonlinear dynamical boundary conditions in a three dimensional fractal cylindrical domain \begin{document} $Q$ \end{document} , whose lateral boundary is a fractal surface \begin{document}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::566d567e25c0ac0d502333c6745c8dcf
http://hdl.handle.net/11573/1186216
http://hdl.handle.net/11573/1186216
Nonlocal Venttsel' diffusion in fractal‐type domains: Regularity results and numerical approximation
We study a nonlocal Venttsel' problem in a non-convex bounded domain with a Koch-type boundary. Regularity results of the strict solution are proved in weighted Sobolev spaces. The numerical approximation of the problem is carried out and optimal a p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d8deef7c189b8f327af3b61d592d1cb
http://hdl.handle.net/11573/1280245
http://hdl.handle.net/11573/1280245