Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Simon Axelrod"'
Publikováno v:
Nature Communications, Vol 13, Iss 1, Pp 1-11 (2022)
The authors introduce a diabatic neural network to accelerate excitedstate, non-adiabatic simulations of azobenzene derivatives. The model predicts quantum yields for unseen species that are correlated with experiment.
Externí odkaz:
https://doaj.org/article/945d7acb1c6f4f87834bd6f01e69d0fe
Autor:
Simon Axelrod, Rafael Gómez-Bombarelli
Publikováno v:
Scientific Data, Vol 9, Iss 1, Pp 1-14 (2022)
Measurement(s) Conformer geometries and properties Technology Type(s) Computational Chemistry
Externí odkaz:
https://doaj.org/article/fbe9f162fb3a46a8b101637d2c0a8a1b
Autor:
Manuel Hartweg, Yivan Jiang, Gokhan Yilmaz, Cassie M. Jarvis, Hung V.-T. Nguyen, Gastón A. Primo, Alessandra Monaco, Valentin P. Beyer, Kathleen K. Chen, Somesh Mohapatra, Simon Axelrod, Rafael Gómez-Bombarelli, Laura L. Kiessling, C. Remzi Becer, Jeremiah A. Johnson
Publikováno v:
JACS Au, Vol 1, Iss 10, Pp 1621-1630 (2021)
Externí odkaz:
https://doaj.org/article/12f97e4b8feb4da4a652446acd1a467c
Autor:
Simon Axelrod, Rafael Gómez-Bombarelli
Publikováno v:
Machine Learning: Science and Technology, Vol 4, Iss 3, p 035025 (2023)
Virtual screening can accelerate drug discovery by identifying promising candidates for experimental evaluation. Machine learning is a powerful method for screening, as it can learn complex structure–property relationships from experimental data an
Externí odkaz:
https://doaj.org/article/2ee5b25847da4ff2b871e5f328878f85
Autor:
Simon Axelrod, Daniel Schwalbe-Koda, Somesh Mohapatra, James Damewood, Kevin P. Greenman, Rafael Gómez-Bombarelli
Publikováno v:
Accounts of Materials Research. 3:343-357
Publikováno v:
Chem. 7:738-751
Summary Modeling dynamical effects in chemical reactions typically requires ab initio molecular dynamics (AIMD) simulations due to the breakdown of transition state theory (TST). Reactive AIMD simulations are limited to lower-accuracy electronic stru
Autor:
Nathan Frey, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor Coley, Vijay Gadepally
Massive scale, both in terms of data availability and computation, enables significant breakthroughs in key application areas of deep learning such as natural language processing (NLP) and computer vision. There is emerging evidence that scale may be
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::002098cccd1d6ce46ceb7274ad1ba1cd
https://doi.org/10.26434/chemrxiv-2022-3s512
https://doi.org/10.26434/chemrxiv-2022-3s512
Autor:
Nathan C. Frey, Dan Zhao, Simon Axelrod, Michael Jones, David Bestor, Vijay Gadepally, Rafael Gomez-Bombarelli, Siddharth Samsi
Publikováno v:
2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
Molecular photoswitches are the foundation of light-activated drugs. A key photoswitch is azobenzene, which exhibits trans-cis isomerism in response to light. The thermal half-life of the cis isomer is of crucial importance, since it controls the dur
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::da1659446035d7cf2b02f70c2f7621e9
Autor:
Kathleen K. Chen, Manuel Hartweg, Gastón A. Primo, Rafael Gómez-Bombarelli, Alessandra Monaco, Cassie M. Jarvis, C. Remzi Becer, Laura L. Kiessling, Valentin P. Beyer, Somesh Mohapatra, Gokhan Yilmaz, Hung V.-T. Nguyen, Jeremiah A. Johnson, Yivan Jiang, Simon Axelrod
Publikováno v:
JACS Au
JACS Au, Vol 1, Iss 10, Pp 1621-1630 (2021)
JACS Au, Vol 1, Iss 10, Pp 1621-1630 (2021)
Carbohydrate-binding proteins (lectins) play vital roles in cell recognition and signaling, including pathogen binding and innate immunity. Thus, targeting lectins, especially those on the surface of immune cells, could advance immunology and drug di