Zobrazeno 1 - 10
of 208
pro vyhledávání: '"Simon, Denis"'
Autor:
Simon, Denis, Terracini, Lea
An algebraic integer is said large if all its real or complex embeddings have absolute value larger than $1$. An integral ideal is said \emph{large} if it admits a large generator. We investigate the notion of largeness, relating it to some arithmeti
Externí odkaz:
http://arxiv.org/abs/2206.15278
Autor:
Mascot, Nicolas, Simon, Denis
We present a simple and efficient algorithm to compute the sum of the algebraic conjugates of a point on an elliptic curve.
Externí odkaz:
http://arxiv.org/abs/2203.10999
Autor:
Simon, Denis
Publikováno v:
American Journal of Chinese Studies, 2022 Apr 01. 29(1), 67-83.
Externí odkaz:
https://www.jstor.org/stable/45416326
Publikováno v:
Issues in Science and Technology, 2020 Apr 01. 36(3), 15-17.
Externí odkaz:
https://www.jstor.org/stable/26949127
Autor:
Simon, Denis, Weimann, Martin
We give lower bounds for the degree of the discriminant with respect to y of separable polynomials f in K[x,y] over an algebraically closed field of characteristic zero. Depending on the invariants involved in the lower bound, we give a geometrical c
Externí odkaz:
http://arxiv.org/abs/1507.01091
Autor:
Belabas, Karim, Simon, Denis
Publikováno v:
Mathematics of Computation; Jul2024, Vol. 93 Issue 348, p1953-1961, 9p
Publikováno v:
Math. Comp. 84:292, 895-922 (2015)
This is the third in a series of papers in which we study the n-Selmer group of an elliptic curve, with the aim of representing its elements as curves of degree n in P^{n-1}. The methods we describe are practical in the case n=3 for elliptic curves o
Externí odkaz:
http://arxiv.org/abs/1107.3516
Publikováno v:
J. reine angew. Math. 632, 63-84 (2009)
This is the second in a series of papers in which we study the n-Selmer group of an elliptic curve. In this paper, we show how to realize elements of the n-Selmer group explicitly as curves of degree n embedded in P^{n-1}. The main tool we use is a c
Externí odkaz:
http://arxiv.org/abs/math/0611606