Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Silvia Cingolani"'
Publikováno v:
Mathematics in Engineering, Vol 4, Iss 6, Pp 1-33 (2022)
Goal of this paper is to study the following doubly nonlocal equation $(- \Delta)^s u + \mu u = (I_\alpha*F(u))F'(u) \quad {\rm{in}}\;{\mathbb{R}^N}\qquad\qquad\qquad\qquad ({\rm{P}}) $ in the case of general nonlinearities $ F \in C^1(\mathbb
Externí odkaz:
https://doaj.org/article/206efa85f2e54d01ac3f17b7d084bd79
Publikováno v:
Symmetry, Vol 13, Iss 7, p 1199 (2021)
We prove the existence of a spherically symmetric solution for a Schrödinger equation with a nonlocal nonlinearity of Choquard type. This term is assumed to be subcritical and satisfy almost optimal assumptions. The mass of of the solution, describe
Externí odkaz:
https://doaj.org/article/e8564ef62cd7408ea83e7cff926e04b4
Publikováno v:
Electronic Journal of Differential Equations, Vol 2003, Iss 78, Pp 1-13 (2003)
In this work we study a class of functionals, defined on Banach spaces, associated with quasilinear elliptic systems. Firstly, we prove some regularity results about the critical points of such functionals and then we estimate the critical groups in
Externí odkaz:
https://doaj.org/article/a63daa77bb83476182c8f9abf2cf91a2
Autor:
Silvia Cingolani, Tobias Weth
Publikováno v:
Journal of the London Mathematical Society. 105:1897-1935
Autor:
Silvia Cingolani, Kazunaga Tanaka
Publikováno v:
Trends in Mathematics ISBN: 9783031200205
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::debc680a38ffe67c4f9445bc94d3d5c5
https://doi.org/10.1007/978-3-031-20021-2_16
https://doi.org/10.1007/978-3-031-20021-2_16
Publikováno v:
Nonlinearity. 34:4017-4056
We study existence of solutions for the fractional problem \begin{equation*} (P_m) \quad \left \{ \begin{aligned} (-��)^{s} u + ��u &=g(u) & \; \text{in $\mathbb{R}^N$}, \cr \int_{\mathbb{R}^N} u^2 dx &= m, & \cr u \in H^s_r&(\mathbb{R}^N), &
We prove existence of infinitely many solutions $$u \in H^1_r({\mathbb {R}}^N)$$ u ∈ H r 1 ( R N ) for the nonlinear Choquard equation $$\begin{aligned} - {\varDelta } u + \mu u =(I_\alpha *F(u)) f(u) \quad \hbox {in}\ {\mathbb {R}}^N, \end{aligned
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7cb9456d77b4be19180ae8e75720fe8e
https://hdl.handle.net/10807/227436
https://hdl.handle.net/10807/227436
Publikováno v:
Symmetry
Volume 13
Issue 7
Symmetry, Vol 13, Iss 1199, p 1199 (2021)
Volume 13
Issue 7
Symmetry, Vol 13, Iss 1199, p 1199 (2021)
We prove the existence of a spherically symmetric solution for a Schrödinger equation with a nonlocal nonlinearity of Choquard type. This term is assumed to be subcritical and satisfy almost optimal assumptions. The mass of of the solution, describe
Autor:
Giuseppina Vannella, Silvia Cingolani
Publikováno v:
Journal of Differential Equations. 266:4510-4532
In this paper we consider the quasilinear critical problem ( P λ ) { − Δ p u = λ u q − 1 + u p ⁎ − 1 in Ω u > 0 in Ω u = 0 on ∂ Ω where Ω is a regular bounded domain in R N , N ≥ p 2 , 1 p 2 , p ≤ q p ⁎ , p ⁎ = N p / ( N −
Autor:
Silvia Cingolani, Kazunaga Tanaka
Publikováno v:
Geometric Properties for Parabolic and Elliptic PDE's ISBN: 9783030733629
We study existence of radially symmetric solutions for the nonlocal problem: Open image in new window where N ≥ 3, α ∈ (0, N), c > 0, \(I_\alpha (x)={A_\alpha \over |x|{ }^{N-\alpha }}\) is the Riesz potential, \(F\in C^1(\mathbb {R},\mathbb {R}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::db3e28d2786ef4bd48348e0b0d55bba0
https://doi.org/10.1007/978-3-030-73363-6_2
https://doi.org/10.1007/978-3-030-73363-6_2