Zobrazeno 1 - 10
of 3 368
pro vyhledávání: '"Silverman, A. H."'
Autor:
Silverman, Jospeh H.
Let $\mathcal{L}$ be a finite-dimensional semisimple Lie algebra of rank $N$ over an algebraically closed field of characteristic $0$. Associated to $\mathcal{L}$ is a family of polynomial folding maps $$\textsf{F}_{n}:\mathbb{A}^N\to\mathbb{A}^N\qua
Externí odkaz:
http://arxiv.org/abs/2410.10598
Autor:
Silverman, Joseph H.
In this note we give an overview of various quantities that are used to measure the complexity of an algebraic dynamical system f:X-->X, including the dynamical degree d(f), which gives a coarse measure of the geometric complexity of the iterates of
Externí odkaz:
http://arxiv.org/abs/2408.01559
Autor:
Silverman, Joseph H.
Let $\mathbb{F}$ be the function field of a curve over an algebraically closed field with $\operatorname{char}(\mathbb{F})\ne2,3$, and let $E/\mathbb{F}$ be an elliptic curve. Then for all finite extensions $\mathbb{K}/\mathbb{F}$ and all non-torsion
Externí odkaz:
http://arxiv.org/abs/2402.14771
Autor:
Pasten, Hector, Silverman, Joseph H.
Let $X/K$ be a smooth projective variety defined over a number field, and let $f:X\to{X}$ be a morphism defined over $K$. We formulate a number of statements of varying strengths asserting, roughly, that if there is at least one point $P_0\in{X(K)}$
Externí odkaz:
http://arxiv.org/abs/2307.12097
Autor:
Hindes, Wade, Silverman, Joseph H.
Publikováno v:
Pacific J. Math. 325 (2023) 281-297
Let $V$ be a projective variety defined over a number field $K$, let $S$ be a polarized set of endomorphisms of $V$ all defined over $K$, and let $P\in V(K)$. For each prime $\mathfrak{p}$ of $K$, let $m_{\mathfrak{p}}(S,P)$ denote the number of poin
Externí odkaz:
http://arxiv.org/abs/2303.14819
Autor:
Silverman, Joseph H.
Charles, Goren, and Lauter [J. Cryptology 22(1), 2009] explained how one can construct hash functions using expander graphs in which it is hard to find paths between specified vertices. The set of solutions to the classical Markoff equation $X^2+Y^2+
Externí odkaz:
http://arxiv.org/abs/2211.08511
Let $\mathcal{W}\subset\mathbb{P}^1\times\mathbb{P}^1\times\mathbb{P}^1$ be a surface given by the vanishing of a $(2,2,2)$-form. These surfaces admit three involutions coming from the three projections $\mathcal{W}\to\mathbb{P}^1\times\mathbb{P}^1$,
Externí odkaz:
http://arxiv.org/abs/2201.12588
Let $K$ be a 1-dimensional function field over an algebraically closed field of characteristic $0$, and let $A/K$ be an abelian surface. Under mild assumptions, we prove a Lehmer-type lower bound for points in $A(\bar{K})$. More precisely, we prove t
Externí odkaz:
http://arxiv.org/abs/2108.09577
Autor:
Chinnam, Naga babu 1, ‡, Thapar, Roopa 1, ‡, Arvai, Andrew S. 2, Sarker, Altaf H. 3, Soll, Jennifer M. 4, Paul, Tanmoy 5, Syed, Aleem 1, Rosenberg, Daniel J. 6, Hammel, Michal 6, Bacolla, Albino 1, Katsonis, Panagiotis 7, Asthana, Abhishek 8, Tsai, Miaw-Sheue 3, Ivanov, Ivaylo 5, Lichtarge, Olivier 7, Silverman, Robert H. 8, Mosammaparast, Nima 4, Tsutakawa, Susan E. 6, ∗, Tainer, John A. 1, 6, 9, ∗
Publikováno v:
In Journal of Biological Chemistry June 2024 300(6)
Autor:
Xi, Jiajia 1, ∗, Snieckute, Goda 2, 3, Martínez, José Francisco 2, 3, Arendrup, Frederic Schrøder Wenzel 4, Asthana, Abhishek 1, Gaughan, Christina 1, Lund, Anders H. 4, Bekker-Jensen, Simon 2, 3, ∗∗, Silverman, Robert H. 1, 5, ∗∗∗
Publikováno v:
In Cell Reports 23 April 2024 43(4)