Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Silva, Jorge Luiz Deolindo"'
For singular $n$-manifolds in $\mathbb R^{n+k}$ with a corank 1 singular point at $p\in M^n_{\mbox{sing}}$ we define up to $l(n-1)$ different axial curvatures at $p$, where $l=\min\{n,k+1\}$. These curvatures are obtained using the curvature locus (t
Externí odkaz:
http://arxiv.org/abs/2204.06606
Autor:
Silva, Jorge Luiz Deolindo
Nesta tese estudamos a geometria extrínseca de superfícies suave em R4 via seu contato com retas e hiperplanos. Uribe-Vargas introduziu um cr-invariante (crossratio) em uma cúspide de Gauss de uma superfície em R3. Para uma superfície em R4, o p
Autor:
Silva, Jorge Luiz Deolindo
We establish cross-ratio invariants for surfaces in 4-space in an analogous way to Uribe-Vargas's work for surfaces in 3-space. We study the geometric locii of local and multi-local singularities of ortogonal projections of the surface. The cross-rat
Externí odkaz:
http://arxiv.org/abs/1807.11133
We determine local topological types of binary differential equations of asymptotic curves at parabolic and flat umbilical points for generic $2$-parameter families of surfaces in $\mathbb P^3$ by comparing our projective classification of Monge form
Externí odkaz:
http://arxiv.org/abs/1708.04918
We are interested in the local extrinsic geometry of smooth surfaces in 4-space, and classify jets of Monge forms by projective transformations according to $\mathcal{A}^3$-types of their central projections.
Comment: 10 pages
Comment: 10 pages
Externí odkaz:
http://arxiv.org/abs/1601.06255
We present a local classification of smooth projective surfaces in 3-space via projective transformations in accordance with singularity types of central projections up to codimension 4. We also discuss relations between our classification of Monge f
Externí odkaz:
http://arxiv.org/abs/1504.06499