Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Sikora, Igor"'
Autor:
Okay, Cihan, Sikora, Igor
We introduce an equivariant version of contextuality with respect to a symmetry group, which comes with natural applications to quantum theory. In the equivariant setting, we construct cohomology classes that can detect contextuality. This framework
Externí odkaz:
http://arxiv.org/abs/2310.18135
Autor:
Sikora, Igor, Yan, Guoqi
We study the structure of the $RO(G)$-graded homotopy Mackey functors of any Eilenberg-MacLane spectrum $H\underline{M}$ for $G$ a cyclic $p$-group. When $\underline{R}$ is a Green functor, we define orientation classes $u_V$ for $H\underline{R}$ and
Externí odkaz:
http://arxiv.org/abs/2309.17242
A linear constraint system is specified by linear equations over the group $\ZZ_d$ of integers modulo $d$. Their operator solutions play an important role in the study of quantum contextuality and non-local games. In this paper, we use the theory of
Externí odkaz:
http://arxiv.org/abs/2305.07974
Publikováno v:
In Topology and its Applications 1 May 2024 348
Autor:
Sikora, Igor
Let $Q$ denote the cyclic group of order two. Using the Tate diagram we compute the $RO(Q)$-graded coefficients of Eilenberg-MacLane $Q$-spectra and describe their structure as a module over the coefficients of the Eilenberg-MacLane spectrum of the B
Externí odkaz:
http://arxiv.org/abs/2105.09768
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sikora, Igor
The non-equivariant theory of iterated loop spaces has a long and rich history in algebraic topology. Nowadays most of the questions of this theory are resolved. However, the situation is different if we move to equivariant topology - there are still
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=core_ac_uk__::3a8e359aa31003cba80a71d84dfb2da7
http://wrap.warwick.ac.uk/166508/1/WRAP_Theses_Sikora_2021.pdf
http://wrap.warwick.ac.uk/166508/1/WRAP_Theses_Sikora_2021.pdf