Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Siham Aouissi"'
Autor:
Siham Aouissi, Daniel C. Mayer
Publikováno v:
Mathematics, Vol 12, Iss 1, p 126 (2023)
Let (kμ)μ=14 be a quartet of cyclic cubic number fields sharing a common conductor c=pqr divisible by exactly three prime(power)s, p,q,r. For those components of the quartet whose 3-class group Cl3(kμ)≃(Z/3Z)2 is elementary bicyclic, the automor
Externí odkaz:
https://doaj.org/article/deb087285ac64305a6d4191ce9787a16
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 39, Iss 3 (2020)
Let be k=Q(\sqrt[3]{p},\zeta_3), where p is a prime number such that p \equiv 1 (mod 9), and let C_{k,3} the 3-component of the class group of k. In his work [7], Frank Gerth III proves a conjecture made by Calegari and Emerton which gives a necessar
Externí odkaz:
https://doaj.org/article/57ae360c1d1e4aae95b8020f4cd1d1a1
Publikováno v:
Kyushu Journal of Mathematics. 76:101-118
Publikováno v:
Boletim da Sociedade Paranaense de Matemática. 39:37-52
Let $\mathrm{k}=\mathbb{Q}\left(\sqrt[3]{p},\zeta_3\right)$, where $p$ is a prime number such that $p \equiv 1 \pmod 9$, and let $C_{\mathrm{k},3}$ be the $3$-component of the class group of $\mathrm{k}$. In \cite{GERTH3}, Frank Gerth III proves a co
Let $p\equiv 1\,(\mathrm{mod}\,9)$ be a prime number and $\zeta_3$ be a primitive cube root of unity. Then $\mathrm{k}=\mathbb{Q}(\sqrt[3]{p},\zeta_3)$ is a pure metacyclic field with group $\mathrm{Gal}(\mathrm{k}/\mathbb{Q})\simeq S_3$. In the case
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::414395a134b8205474c047c360fb653e
http://arxiv.org/abs/2103.04184
http://arxiv.org/abs/2103.04184
Let $k=k_0(\sqrt[3]{d})$ be a cubic Kummer extension of $k_0=\mathbb{Q}(\zeta_3)$ with $d>1$ a cube-free integer and $\zeta_3$ a primitive third root of unity. Denote by $C_{k,3}^{(\sigma)}$ the $3$-group of ambiguous classes of the extension $k/k_0$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::032bdedbf603db08f1aff9fbf007500b
http://arxiv.org/abs/1804.00767
http://arxiv.org/abs/1804.00767
Let $p\equiv 1\,(\mathrm{mod}\,3)$ be a prime and denote by $\zeta_3$ a primitive third root of unity. Recently, Lemmermeyer presented a conjecture about $3$-class groups of pure cubic fields $L=\mathbb{Q}(\sqrt[3]{p})$ and of their normal closures $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::88730507f186ce20f796ede1412cf57d