Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Sierra Gonzalez, David"'
Autor:
Salazar-Gomez, Gustavo, Liu, Wenqian, Diaz-Zapata, Manuel, Sierra-Gonzalez, David, Laugier, Christian
In autonomous driving, addressing occlusion scenarios is crucial yet challenging. Robust surrounding perception is essential for handling occlusions and aiding motion planning. State-of-the-art models fuse Lidar and Camera data to produce impressive
Externí odkaz:
http://arxiv.org/abs/2311.05319
Autor:
Sierra Gonzalez, David
Au cours des dernières décennies, les constructeurs automobiles ont constamment introduit des innovations technologiques visant à rendre les véhicules plus sûrs. Le niveau de sophistication de ces systèmes avancés d’aide à la conduite s’e
Externí odkaz:
http://www.theses.fr/2019GREAM012/document
Autor:
Sierra Gonzalez, David
Publikováno v:
Artificial Intelligence [cs.AI]. Université Grenoble Alpes, 2019. English. ⟨NNT : 2019GREAM012⟩
During the past few decades automakers have consistently introduced technological innovations aimed to make road vehicles safer. The level of sophistication of these advanced driver assistance systems has increased parallel to developments in sensor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::f4587662ffeb95e14475afb74f19ee6b
https://tel.archives-ouvertes.fr/tel-02184362/document
https://tel.archives-ouvertes.fr/tel-02184362/document
Publikováno v:
ICARCV 2020-16th IEEE International Conference on Control, Automation, Robotics and Vision
ICARCV 2020-16th IEEE International Conference on Control, Automation, Robotics and Vision, Dec 2020, Shenzhen, China. pp.1-6
ICARCV
ICARCV 2020-16th IEEE International Conference on Control, Automation, Robotics and Vision, Dec 2020, Shenzhen, China. pp.1-6
ICARCV
International audience; Traditionally, point cloud-based 3D object detectors are trained on annotated, non-sequential samples taken from driving sequences (e.g. the KITTI dataset). However, by doing this, the developed algorithms renounce to exploit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c9f9e3c644b6ef11bf5cf329f38ebb68
https://inria.hal.science/hal-03044979/document
https://inria.hal.science/hal-03044979/document
Publikováno v:
ITSC
ITSC 2019-22nd IEEE International Conference on Intelligent Transportation Systems
ITSC 2019-22nd IEEE International Conference on Intelligent Transportation Systems, Oct 2019, Auckland, New Zealand. pp.1-8
ITSC 2019-22nd IEEE International Conference on Intelligent Transportation Systems
ITSC 2019-22nd IEEE International Conference on Intelligent Transportation Systems, Oct 2019, Auckland, New Zealand. pp.1-8
In this work, we present a decision-making system for automated vehicles driving in highway environments. The task is modeled as a Partially Observable Markov Decision Process, in which the physical states and intentions of surrounding traffic are un
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c074b80dfd3fa80c7c200b7d6673f0f6
https://hal.inria.fr/hal-02188235
https://hal.inria.fr/hal-02188235
Publikováno v:
ICRA 2017 Workshop on Robotics and Vehicular Technologies for Self-driving cars
ICRA 2017 Workshop on Robotics and Vehicular Technologies for Self-driving cars, Jun 2017, Singapore, Singapore
ICRA 2017 Workshop on Robotics and Vehicular Technologies for Self-driving cars, Jun 2017, Singapore, Singapore
International audience; We address the problem of multi-vehicle tracking and motion prediction in highway scenarios using information from sensors and perception systems widely used in automated driving. In particular, we focus on the detection of la
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::fb47920feac1f9addabd4f3a2f7169c0
https://hal.inria.fr/hal-01534094
https://hal.inria.fr/hal-01534094
Publikováno v:
Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC 2017)
Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC 2017), Oct 2017, Yokohama, Japan
ITSC
Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC 2017), Oct 2017, Yokohama, Japan
ITSC
International audience; In this work, we address the problem of lane change maneuver prediction in highway scenarios using information from sensors and perception systems widely used in automated driving. Our prediction approach is twofold. First, a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9eddf1d2eac4cc9fc90ac45419c821a6
https://hal.inria.fr/hal-01589493
https://hal.inria.fr/hal-01589493