Zobrazeno 1 - 10
of 45 086
pro vyhledávání: '"Sidorenko ON"'
Autor:
Nie, Jiaxi, Spiro, Sam
Let $\mathrm{ex}(G_{n,p}^r,F)$ denote the maximum number of edges in an $F$-free subgraph of the random $r$-uniform hypergraph $G_{n,p}^r$. Building on recent work of Conlon, Lee, and Sidorenko, we prove non-trivial lower bounds on $\mathrm{ex}(G_{n,
Externí odkaz:
http://arxiv.org/abs/2309.12873
Autor:
Frederickson, Bryce, Yepremyan, Liana
Publikováno v:
Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications (2023) 450-456
For $B \subseteq \mathbb F_q^m$, the $n$-th affine extremal number of $B$ is the maximum cardinality of a set $A \subseteq \mathbb F_q^n$ with no subset which is affinely isomorphic to $B$. Furstenberg and Katznelson proved that for any $B \subseteq
Externí odkaz:
http://arxiv.org/abs/2308.13489
Given two non-empty graphs $H$ and $T$, write $H\succcurlyeq T$ to mean that $t(H,G)^{|E(T)|}\geq t(T,G)^{|E(H)|}$ for every graph $G$, where $t(\cdot,\cdot)$ is the homomorphism density function. We obtain various necessary and sufficient conditions
Externí odkaz:
http://arxiv.org/abs/2305.16542
Autor:
Altman, Daniel
A system of linear equations in $\mathbb{F}_p^n$ is \textit{Sidorenko} if any subset of $\mathbb{F}_p^n$ contains at least as many solutions to the system as a random set of the same density, asymptotically as $n\to \infty$. A system of linear equati
Externí odkaz:
http://arxiv.org/abs/2210.17493
We study analogues of Sidorenko's conjecture and the forcing conjecture in oriented graphs, showing that natural variants of these conjectures in directed graphs are equivalent to the asymmetric, undirected analogues of the conjectures.
Comment:
Comment:
Externí odkaz:
http://arxiv.org/abs/2210.16971
Autor:
Coregliano, Leonardo N.
A Sidorenko bigraph is one whose density in a bigraphon $W$ is minimized precisely when $W$ is constant. Several techniques of the literature to prove the Sidorenko property consist of decomposing (typically in a tree decomposition) the bigraph into
Externí odkaz:
http://arxiv.org/abs/2205.14703
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
The Quarterly Journal of Mathematics, Volume 74, Issue 3, September 2023, Pages 957-974
A system of linear forms $L=\{L_1,\ldots,L_m\}$ over $\mathbb{F}_q$ is said to be Sidorenko if the number of solutions to $L=0$ in any $A \subseteq \mathbb{F}_{q}^n$ is asymptotically as $n\to\infty$ at least the expected number of solutions in a ran
Externí odkaz:
http://arxiv.org/abs/2107.14413
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Versteegen, Leo
A linear configuration is said to be common in a finite Abelian group $G$ if for every 2-coloring of $G$ the number of monochromatic instances of the configuration is at least as large as for a randomly chosen coloring. Saad and Wolf conjectured that
Externí odkaz:
http://arxiv.org/abs/2109.04445