Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Sibylle Schroll"'
Publikováno v:
Journal of the London Mathematical Society.
Publikováno v:
International Mathematics Research Notices
We construct Grassmannian categories of infinite rank, providing an infinite analogue of the Grassmannian cluster categories introduced by Jensen, King, and Su. Each Grassmannian category of infinite rank is given as the category of graded maximal Co
Publikováno v:
Haugland, J, Jacobsen, K M & Schroll, S 2022, ' The role of gentle algebras in higher homological algebra ', Forum Mathematicum, vol. 34, no. 5, pp. 1255-1275 . https://doi.org/10.1515/forum-2021-0311
Forum mathematicum
Forum mathematicum
We investigate the role of gentle algebras in higher homological algebra. In the first part of the paper, we show that if the module category of a gentle algebra $\Lambda$ contains a $d$-cluster tilting subcategory for some $d \geq 2$, then $\Lambda$
Publikováno v:
Mathematische Zeitschrift. 299:2405-2417
In this paper, motivated by a $\tau$-tilting version of the Brauer-Thrall Conjectures, we study general properties of band modules and their endomorphisms in the module category of a finite dimensional algebra. As an application we describe propertie
Publikováno v:
Journal of Algebra. 569:856-874
In this note we correct two oversights in Canakci et al. (2019) [6] which only occur when a band complex is involved. As a consequence we see that the mapping cone of a morphism between two band complexes can decompose into arbitrarily many indecompo
Publikováno v:
Canadian Journal of Mathematics, 73(1), 249-292. Canadian Mathematical Society
Canak, I, Pauksztello, D & Schroll, S 2021, ' On Extensions for Gentle Algebras ', Canadian Journal of Mathematics, vol. 73, no. 1, pp. 249-292 . https://doi.org/10.4153/S0008414X2000005X
Canak, I, Pauksztello, D & Schroll, S 2021, ' On Extensions for Gentle Algebras ', Canadian Journal of Mathematics, vol. 73, no. 1, pp. 249-292 . https://doi.org/10.4153/S0008414X2000005X
We give a complete description of a basis of the extension spaces between indecomposable string and quasi-simple band modules in the module category of a gentle algebra.
34 pages, updated statements on middle terms of extensions involving band m
34 pages, updated statements on middle terms of extensions involving band m
Publikováno v:
Journal of Algebra. 558:293-326
In this paper we determine the first Hochschild homology and cohomology with different coefficients for gentle algebras and we give a geometrical interpretation of these (co)homologies using the ribbon graph of a gentle algebra as defined in earlier
Autor:
Sibylle Schroll, Ilke Canakci
Publikováno v:
Advances in Applied Mathematics, 126:102094, 1-22. Academic Press Inc.
Çanakçı, İ & Schroll, S 2021, ' Lattice bijections for string modules, snake graphs and the weak Bruhat order ', Advances in Applied Mathematics, vol. 126, 102094, pp. 1-22 . https://doi.org/10.1016/j.aam.2020.102094
Çanakçı, İ & Schroll, S 2021, ' Lattice bijections for string modules, snake graphs and the weak Bruhat order ', Advances in Applied Mathematics, vol. 126, 102094, pp. 1-22 . https://doi.org/10.1016/j.aam.2020.102094
In this paper we introduce abstract string modules and give an explicit bijection between the submodule lattice of an abstract string module and the perfect matching lattice of the corresponding abstract snake graph. In particular, we make explicit t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::451e4c86e058e810bf885733525b8977
https://research.vu.nl/en/publications/852770bc-e17c-457f-b28e-5f0f41d6bcd7
https://research.vu.nl/en/publications/852770bc-e17c-457f-b28e-5f0f41d6bcd7
Publikováno v:
Asadollahi, J, Jørgensen, P, Schroll, S & Treffinger, H 2022, ' On higher torsion classes ', Nagoya Mathematical Journal, vol. 248, pp. 823-848 . https://doi.org/10.1017/nmj.2022.8
Building on the embedding of an $n$-abelian category $\mathscr{M}$ into an abelian category $\mathcal{A}$ as an $n$-cluster-tilting subcategory of $\mathcal{A}$, in this paper we relate the $n$-torsion classes of $\mathscr{M}$ with the torsion classe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e6584ff14bed23fa3991277cf5bf8cb1
In this paper we introduce new affine algebraic varieties whose points correspond to associative algebras. We show that the algebras within a variety share many important homological properties. In particular, any two algebras in the same variety hav
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3f9427e1bdd259d7e7da8199ff07e666
https://hdl.handle.net/10919/101758
https://hdl.handle.net/10919/101758