Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Si, Zengyan"'
In this paper we solve a long standing problem about the bilinear $T1$ theorem to characterize the (weighted) compactness of bilinear Calder\'{o}n-Zygmund operators. Let $T$ be a bilinear operator associated with a standard bilinear Calder\'{o}n-Zygm
Externí odkaz:
http://arxiv.org/abs/2404.14013
Publikováno v:
J. Fourier Anal. Appl. 30 (2024), No. 7
In recent years, sharp or quantitative weighted inequalities have attracted considerable attention on account of $A_2$ conjecture solved by Hyt\"{o}nen. Advances have greatly improved conceptual understanding of classical objects such as Calder\'{o}n
Externí odkaz:
http://arxiv.org/abs/2206.12570
Let $L$ be a linear operator in $L^2(\mathbb{R}^n)$ which generates a semigroup $e^{-tL}$ whose kernels $p_t(x,y)$ satisfy the Gaussian upper bound. In this paper, we investigate several kinds of weighted norm inequalities for the conical square func
Externí odkaz:
http://arxiv.org/abs/2011.11420
Autor:
Cao, Mingming, Hormozi, Mahdi, Ibañez-Firnkorn, Gonzalo, Rivera-Ríos, Israel P., Si, Zengyan, Yabuta, Kôzô
Let $S_{\alpha}$ be the multilinear square function defined on the cone with aperture $\alpha \geq 1$. In this paper, we investigate several kinds of weighted norm inequalities for $S_{\alpha}$. We first obtain a sharp weighted estimate in terms of a
Externí odkaz:
http://arxiv.org/abs/2009.13814
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 November 2023 527(1) Part 1
Publikováno v:
Journal of Inequalities and Applications (2019)
Let $0<\alpha
Externí odkaz:
http://arxiv.org/abs/1901.06835
Autor:
Si, Zengyan1 (AUTHOR) zengyan@hpu.edu.cn, Wang, Ling1 (AUTHOR)
Publikováno v:
Frontiers of Mathematics. Nov2023, Vol. 18 Issue 6, p1315-1330. 16p.
Publikováno v:
Taiwanese Journal of Mathematics, 2020 Oct 01. 24(5), 1117-1138.
Externí odkaz:
https://www.jstor.org/stable/26973975
Let $n\ge 1$ and $\mathfrak{T}_{m}$ be the bilinear square Fourier multiplier operator associated with a symbol $m$, which is defined by $$ \mathfrak{T}_{m}(f_1,f_2)(x) = \biggl( \int_{0}^\infty\Big|\int_{(\mathbb{R}^n)^2} e^{2\pi ix\cdot (\xi_1 +\xi
Externí odkaz:
http://arxiv.org/abs/1604.05579