Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Shylaja, Devika"'
Autor:
Kumar, Sarvesh, Shylaja, Devika
This article presents a priori error estimates of the miscible displacement of one compressible fluid by another in a porous medium. The study utilizes the $H(\rm div)$ conforming virtual element method (VEM) for the approximation of the velocity, wh
Externí odkaz:
http://arxiv.org/abs/2405.06352
Autor:
Kumar, Sarvesh, Shylaja, Devika
This article presents a priori error estimates of the miscible displacement of one incompressible fluid by another through a porous medium characterized by a coupled system of nonlinear elliptic and parabolic equations. The study utilizes the $H(\rm{
Externí odkaz:
http://arxiv.org/abs/2401.01618
Autor:
Shylaja, Devika, Kumar, Sarvesh
This paper analyses the nonconforming Morley type virtual element method to approximate a regular solution to the von K\'{a}rm\'{a}n equations that describes bending of very thin elastic plates. Local existence and uniqueness of a discrete solution t
Externí odkaz:
http://arxiv.org/abs/2309.05303
A unified framework for fourth-order semilinear problems with trilinear nonlinearity and general source allows for quasi-best approximation with lowest-order finite element methods. This paper establishes the stability and a priori error control in t
Externí odkaz:
http://arxiv.org/abs/2305.06171
Autor:
Shylaja, Devika
This paper focusses on the optimal control problems governed by fourth-order linear elliptic equations with clamped boundary conditions in the framework of the Hessian discretisation method (HDM). The HDM is an abstract framework that enables the con
Externí odkaz:
http://arxiv.org/abs/2212.06700
This article discusses numerical analysis of the distributed optimal control problem governed by the von K\'{a}rm\'{a}n equations defined on a polygonal domain in $\mathbb{R}^2$. The state and adjoint variables are discretised using the nonconforming
Externí odkaz:
http://arxiv.org/abs/2107.04804
Autor:
Shylaja, Devika, Nair, M. T.
This paper deals with the numerical approximation of the biharmonic inverse source problem in an abstract setting in which the measurement data is finite-dimensional. This unified framework in particular covers the conforming and nonconforming finite
Externí odkaz:
http://arxiv.org/abs/2106.07357
This paper focusses on the von K\'{a}rm\'{a}n equations for the moderately large deformation of a very thin plate with the convex obstacle constraint leading to a coupled system of semilinear fourth-order obstacle problem and motivates its nonconform
Externí odkaz:
http://arxiv.org/abs/2009.03205
This paper deals with the Hessian discretisation method (HDM) for fourth order semi-linear elliptic equations with a trilinear nonlinearity. The HDM provides a generic framework for the convergence analysis of several numerical methods, such as, the
Externí odkaz:
http://arxiv.org/abs/2004.09842
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.