Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Shuta Nakajima"'
Designing nontrivial one-dimensional Floquet topological phases using a spin-1/2 double-kicked rotor
Publikováno v:
Physical Review Research, Vol 5, Iss 4, p 043167 (2023)
A quantum kicked rotor model is one of the promising systems to realize various Floquet topological phases. We consider a double-kicked rotor model for a one-dimensional quasi-spin-1/2 Bose-Einstein condensate with spin-dependent and spin-independent
Externí odkaz:
https://doaj.org/article/7f27bbc20c2744c9a98ef045f4c51523
Publikováno v:
Stochastic Processes and their Applications. 151:127-173
Autor:
Shuta Nakajima, Nike Sun
Publikováno v:
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) ISBN: 9781611977554
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::be1bc41ef87d319e2dd9663b81590297
https://doi.org/10.1137/1.9781611977554.ch28
https://doi.org/10.1137/1.9781611977554.ch28
Autor:
Yoshiro Takahashi, Yoshihito Kuno, Pasquale Marra, Nobuyuki Takei, Shuta Nakajima, Keita Sakuma
Publikováno v:
Nature Physics. 17:844-849
Robustness against perturbations lies at the heart of topological phenomena. If, however, a perturbation such as disorder becomes dominant, it may cause a topological phase transition between topologically non-trivial and trivial phases. Here we expe
Autor:
Shuta Nakajima
Publikováno v:
Electronic Journal of Probability. 27
Autor:
Shuta Nakajima, Clément Cosco
Publikováno v:
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques. 57
We consider the discrete directed polymer model with i.i.d. environment and we study the fluctuations of the tail n(d−2)/4(W∞−Wn) of the normalized partition function. It was proven by Comets and Liu (J. Math. Anal. Appl. 455 (2017) 312–335),
We study isotropic Gaussian random fields on the high-dimensional sphere with an added deterministic linear term, also known as mixed p-spin Hamiltonians with external field. We prove that if the external field is sufficiently strong, then the result
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eb4ff842873807235f35c790ea577a21
Autor:
Shuta Nakajima
Publikováno v:
Stochastic Analysis, Random Fields and Integrable Probability — Fukuoka 2019 ISBN: 9784864970952
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7b5e2a3bb581134159c8c7dba64c656f
https://doi.org/10.2969/aspm/08710363
https://doi.org/10.2969/aspm/08710363
Autor:
Shuta Nakajima
Publikováno v:
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 2 (2020), 782-791
Nous etudions les fluctuations de la forme limite pour la percolation de premier passage dans $\mathbb{Z}^{d}$. Il est connu que ces fluctuations divergent dans le cas des lois de Bernoulli [Zhang (Probab. Theory. Related. Fields. 136 (2006) 298–32
Autor:
Shuta Nakajima
Publikováno v:
Journal of Statistical Physics. 174:259-275
In this paper, we study some properties of optimal paths in the first passage percolation on $$\mathbb {Z}^d$$ and show the following: (i) the number of optimal paths has an exponentially growth if the distribution has an atom; (ii) the means of inte