Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Shun-Ichi Maezawa"'
Autor:
Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, Shun-Ichi Maezawa, Yuta Nozaki, Yoshio Okamoto, Kenta Ozeki
Publikováno v:
ACM Transactions on Algorithms. 19:1-22
We initiate the study of k -edge-connected orientations of undirected graphs through edge flips for k ≥ 2. We prove that in every orientation of an undirected 2k -edge-connected graph, there exists a sequence of edges such that flipping their direc
Autor:
MICHITAKA FURUYA1 michitaka.furuya@gmail.com, SHUN-ICHI MAEZAWA2 maezawa-shunichi-bg@ynu.jp, RYOTA MATSUBARA3 ryota@sic.shibaura-it.ac.jp, HARUHIDE MATSUDA3 hmatsuda@sic.shibaura-it.ac.jp, SHOICHI TSUCHIYA4 s.tsuchiya@isc.senshu-u.ac.jp, TAKAMASA YASHIMA5 takamasa.yashima@gmail.com
Publikováno v:
Discussiones Mathematicae: Graph Theory. 2022, Vol. 42 Issue 1, p5-13. 9p.
Autor:
Shun ichi Maezawa, Ryota Matsubara, Takamasa Yashima, Shoichi Tsuchiya, Haruhide Matsuda, Michitaka Furuya
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 1, Pp 5-13 (2022)
For an integer k ≥ 2, a k-tree T is defined as a tree with maximum degree at most k. If a k-tree T spans a graph G, then T is called a spanning k-tree of G. Since a spanning 2-tree is a Hamiltonian path, a spanning k-tree is an extended concept of
Publikováno v:
Journal of Combinatorial Optimization. 44:154-171
An edge-colored graph G is a graph with an edge coloring. We say G is properly colored if any two adjacent edges of G have distinct colors, and G is rainbow if any two edges of G have distinct colors. For a vertex $$v \in V(G)$$ , the color degree $$
Autor:
Kenta Ozeki, Shun-ichi Maezawa
Publikováno v:
Journal of Graph Theory. 99:509-519
Autor:
Shun-ichi Maezawa, Akiko Yazawa
Publikováno v:
The Electronic Journal of Combinatorics. 29
Gian-Carlo Rota conjectured that for any $n$ bases $B_1,B_2,\ldots,B_n$ in a matroid of rank $n$, there exist $n$ disjoint transversal bases of $B_1,B_2,\ldots,B_n$. The conjecture for graphic matroids corresponds to the problem of an edge-decomposit
Autor:
Kengo Enami, Shun-ichi Maezawa
Publikováno v:
Graphs and Combinatorics. 38
Publikováno v:
Journal of Graph Theory. 97:569-577
Spacapan recently showed that there exist 3-polytopes with non-Hamiltonian prisms, disproving a conjecture of Rosenfeld and Barnette. By adapting Spacapan's approach we strengthen his result in several directions. We prove that there exists an infini
Publikováno v:
Graphs and Combinatorics. 37:805-822
Let $$\alpha \ge 0$$ and $$k \ge 2$$ be integers. For a graph G, the total k-excess of G is defined as $$\text{ te }(G;k)=\sum _{v \in V(G)}\max \{d_G(v)-k,0\}$$ . In this paper, we propose a new closure concept for a spanning tree with bounded total
Autor:
Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, Shun-ichi Maezawa, Yuta Nozaki, Yoshio Okamoto, Kenta Ozeki
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3843510a2471360afe504b7f3ab9ba79
https://doi.org/10.1137/1.9781611977073.56
https://doi.org/10.1137/1.9781611977073.56