Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Shun Kataoka"'
Publikováno v:
The Journal of Physical Chemistry C. 126:8113-8120
Publikováno v:
Physical Chemistry Chemical Physics. 23:18595-18601
When an aqueous solution freezes at temperatures above the eutectic point, a freeze concentrated solution (FCS) is separated from the ice phase. Reactions of environmental importance often occur in the FCS and, in some cases, are accelerated compared
Autor:
Shun Kataoka, Muneki Yasuda
Publikováno v:
The Review of Socionetwork Strategies. 13:267-280
In this paper, we propose a fast image denoising method based on discrete Markov random fields and the fast Fourier transform. The purpose of the image denoising is to infer the original noiseless image from a noise corrupted image. We consider the c
Autor:
Shun Kataoka
Publikováno v:
IEICE ESS Fundamentals Review. 11:256-265
Publikováno v:
The Proceedings of the Dynamics & Design Conference. 2021:426
Publikováno v:
The Proceedings of the Dynamics & Design Conference. 2020:406
A new Bayesian modeling method is proposed by combining the maximization of the marginal likelihood with a momentum-space renormalization group transformation for Gaussian graphical models. Moreover, we present a scheme for computint the statistical
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a3252d9026bc41b03471bd9e9007d31
Autor:
Toshiki Saitoh, Kazuyuki Tanaka, Shun Kataoka, Hiro Ito, Takuya Kida, Yuya Higashikawa, Naoki Katoh, Tetsuo Shibuya, Yushi Uno
Publikováno v:
The Review of Socionetwork Strategies. 13:99-100
In this paper, we consider Bayesian image denoising based on a Gaussian Markov random field (GMRF) model, for which we propose an new algorithm. Our method can solve Bayesian image denoising problems, including hyperparameter estimation, in $O(n)$-ti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0063cc6cf36ec4e9f8f6ffdecbc8bcbf
We propose a new algorithm to detect the community structure in a network that utilizes both the network structure and vertex attribute data. Suppose we have the network structure together with the vertex attribute data, that is, the information assi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1e27b78a7a0d4e358c655b1c62eeefe9