Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Shulim Kaliman"'
Autor:
Shulim Kaliman
Publikováno v:
Israel Journal of Mathematics. 250:85-113
Autor:
Shulim Kaliman
Publikováno v:
Transformation Groups. 25:517-575
Let X be an algebraic variety isomorphic to the complement of a closed subvariety of dimension at most n − 3 in $$ {\mathbbm{A}}_{\mathrm{k}}^n $$. We find some conditions under which an isomorphism of two closed subvarieties of X can be extended t
Autor:
Shulim Kaliman
Publikováno v:
Functional Analysis and Geometry. :185-196
Publikováno v:
Kaliman, Shulim; Kutzschebauch, Frank; Leuenberger, Matthias (2020). Complete algebraic vector fields on affine surfaces. International journal of mathematics, 31(3), 50 pp. World Scientific 10.1142/S0129167X20500184
Let $\AAutH (X)$ be the subgroup of the group $\AutH (X)$ of holomorphic automorphisms of a normal affine algebraic surface $X$ generated by elements of flows associated with complete algebraic vector fields. Our main result is a classification of al
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::008575072cc8503093f9f9fd5caa174f
https://boris.unibe.ch/151230/2/1411.5484.pdf
https://boris.unibe.ch/151230/2/1411.5484.pdf
Autor:
Shulim Kaliman, Frank Kutzschebauch
Publikováno v:
Kaliman, Shulim; Kutzschebauch, Frank (2017). Algebraic (volume) density property for affine homogeneous spaces. Mathematische Annalen, 367(3-4), pp. 1311-1332. Springer 10.1007/s00208-016-1451-9
Let $X$ be a connected affine homogenous space of a linear algebraic group $G$ over $\C$. (1) If $X$ is different from a line or a torus we show that the space of all algebraic vector fields on $X$ coincides with the Lie algebra generated by complete
Publikováno v:
Kaliman, Shulim; Kutzschebauch, Frank; Truong, Tuyen Trung (2018). On subelliptic manifolds. Israel journal of mathematics, 228(1), pp. 229-247. Springer 10.1007/s11856-018-1760-7
A smooth complex quasi-affine algebraic variety $Y$ is flexible if its special group $\SAut (Y)$ of automorphisms (generated by the elements of one-dimensional unipotent subgroups of $\Aut (Y)$) acts transitively on $Y$. An irreducible algebraic mani
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3cc5084f4c8733e653f051b68ad6b8e6
Autor:
Daniel Daigle, Shulim Kaliman
Publikováno v:
Canadian Mathematical Bulletin. 52:535-543
We strengthen certain results concerning actions of (ℂ, +) on ℂ3 and embeddings of ℂ2 in ℂ3, and show that these results are in fact valid over any field of characteristic zero.
Publikováno v:
manuscripta mathematica. 131:265-274
Let V be a normal affine surface which admits \({\mathbb{C}^*}\) - and \({\mathbb{C}_+}\) -actions. Such surfaces were classified e.g., in: Flenner and Zaidenberg (Osaka J Math 40:981–1009, 2003; 42:931–974), see also the references therein. In t
Autor:
Shulim Kaliman
Publikováno v:
Algebraic Geometry. :629-654
Publikováno v:
Transformation Groups. 13:305-354
A Gizatullin surface is a normal affine surface V over \( \mathbb{C} \), which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of \( \mathbb{C}^{ * } \)-actions