Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Shuibo Huang"'
Publikováno v:
AIMS Mathematics, Vol 8, Iss 9, Pp 20665-20678 (2023)
In this paper, by the Stampacchia method, we consider the boundedness of positive solutions to the following mixed local and nonlocal quasilinear elliptic operator $ \begin{align*} \left\{\begin{array}{rl} -\Delta_{p}u+(-\Delta)_{p}^su = f(x)u^{\g
Externí odkaz:
https://doaj.org/article/4b27399cf80f4dc787635ec772ce5476
Publikováno v:
AIMS Mathematics, Vol 7, Iss 7, Pp 13313-13324 (2022)
In this paper, making use of a new non-smooth variational approach established by Moameni[13,14,15,16], we establish the existence of solutions to the following mixed local and nonlocal elliptic problem $ \begin{equation*} \begin{cases} -\Delta u+
Externí odkaz:
https://doaj.org/article/eef865cfe7094fbe8543871a0595616f
Publikováno v:
AIMS Mathematics, Vol 7, Iss 3, Pp 4199-4210 (2022)
In this paper, we study the summability of solutions to the following semilinear elliptic equations involving mixed local and nonlocal operators $ \left\{ \begin{matrix} - \Delta u(x)+{{(-\Delta )}^{s}}u(x)=f(x), & x\in \Omega , \\ u(x)\ge 0,~
Externí odkaz:
https://doaj.org/article/dcdc1dd0ccd94586a80021a41683172c
Publikováno v:
AIMS Mathematics, Vol 5, Iss 6, Pp 5791-5800 (2020)
In this paper, we investigate the existence of $W_0^{1,1}(\Omega)$ solutions to the following elliptic equation with principal part having noncoercivity and singular quadratic term \begin{equation*} \left \{ \begin{array}{rl} -\text{div}\left(\frac{\
Externí odkaz:
https://doaj.org/article/995190dc3acf4fd8a1a38290b69eabbf
Publikováno v:
Electronic Journal of Differential Equations, Vol 2019, Iss 97,, Pp 1-22 (2019)
Let $\Omega\subseteq \mathbb{R}^N$ be a bounded domain. In this article, we investigate the existence of entropy solutions to the nonlinear elliptic problem $$\displaylines{ -\hbox{div}\Big(\frac{|\nabla u|^{(p-2)} \nabla u+c(x)u^\gamma}{(1+|u|)
Externí odkaz:
https://doaj.org/article/23b78b6c4ba04ddfb3c51c164eaa4d6e
Publikováno v:
Journal of Function Spaces, Vol 2021 (2021)
Externí odkaz:
https://doaj.org/article/bd24c773c4b5464dbbac027810122ebc
Publikováno v:
Complexity, Vol 2020 (2020)
In this paper, we study the existence and nonexistence of solutions to fractional elliptic equations with the Hardy potential −Δsu−λu/x2s=ur−1+δgu,in Ω,ux>0,in Ω,ux=0,in ℝN∖Ω, where Ω⊂ℝN is a bounded Lipschitz domain with 0∈Ω,
Externí odkaz:
https://doaj.org/article/2f7abd6abe6c418eb53b3c7376ae6323
Publikováno v:
Journal of Function Spaces, Vol 2020 (2020)
In this paper we consider the existence of W01,1Ω solutions to following kind of problems −div∇up−2∇u/1+uθp−1=fx,x∈Ω;ux=0,x∈∂Ω where Ω is an open bounded subset of RNN>2, maxp−2N+1/p−1N−1,0
Externí odkaz:
https://doaj.org/article/cad597b0841c430fbc0e4e158d8d9708
Publikováno v:
Journal of Function Spaces, Vol 2020 (2020)
In this paper, we establish the existence of solutions to the following noncoercivity Dirichlet problem −divMx∇u+up−1u=−divuEx+fx,x∈Ω,ux=0,x∈∂Ω, where Ω⊂ℝNN>2 is a bounded smooth domain with 0∈Ω, f belongs to the Lebesgue spac
Externí odkaz:
https://doaj.org/article/f4e876bf81d8435fac0543679e6e1351
Publikováno v:
Boundary Value Problems, Vol 2018, Iss 1, Pp 1-12 (2018)
Abstract In this paper we consider the existence and regularity of solutions to the following nonlocal Dirichlet problems: {(−Δ)su−λu|x|2s+up=f(x),x∈Ω,u>0,x∈Ω,u=0,x∈RN∖Ω, $$ \textstyle\begin{cases} (-\Delta)^{s} u-\lambda\frac{u}{|x|
Externí odkaz:
https://doaj.org/article/c5f00011eff64588903ac5f2fe95c91b