Zobrazeno 1 - 10
of 125
pro vyhledávání: '"Shuanhong Wang"'
Autor:
Yue Gu, Shuanhong Wang
Publikováno v:
Mathematics, Vol 12, Iss 21, p 3384 (2024)
Given the Yetter–Drinfeld category over any quasigroup and a braided Hopf coquasigroup in this category, we first mainly study the Radford’s biproduct corresponding to this braided Hopf coquasigroup. Then, we investigate Sweedler’s duality of t
Externí odkaz:
https://doaj.org/article/3ec422efbc5d4edab833d75039f5426c
Autor:
Huaiwen Guo, Shuanhong Wang
Publikováno v:
Mathematics, Vol 11, Iss 6, p 1401 (2023)
In this paper, we introduce and study two smash products A★H for a left H-quasimodule algebra A over a Hopf quasigroup H over a field K and B#U for a coquasi U-module algebra B over a Hopf coquasigroup U, respectively. Then, we prove our duality th
Externí odkaz:
https://doaj.org/article/f5325fd072164293a34862133311728a
Autor:
Huaiwen Guo, Shuanhong Wang
Publikováno v:
Symmetry, Vol 15, Iss 2, p 551 (2023)
For H a Hopf quasigroup and C, a left quasi H-comodule coalgebra, we show that the smash coproduct C⋊H (as a symmetry of smash product) is linked to some quotient coalgebra Q=C/CH*+ by a Morita-Takeuchi context (as a symmetry of Morita context). We
Externí odkaz:
https://doaj.org/article/e035c739120d44af8c922e3aa46c4385
Autor:
Huaiwen Guo, Shuanhong Wang
Publikováno v:
Mathematics, Vol 11, Iss 2, p 273 (2023)
For H, a Hopf coquasigroup, and A, a left quasi-H-module algebra, we show that the smash product A#H is linked to the algebra of H invariants AH by a Morita context. We use the Morita setting to prove that for finite dimensional H, there are equivale
Externí odkaz:
https://doaj.org/article/9dd0770df4e74eecb8030a7ec5691713
Autor:
Senlin Zhang, Shuanhong Wang
Publikováno v:
Mathematics, Vol 10, Iss 16, p 2943 (2022)
For a group π with unit e, we introduce and study the notion of a π-graded Hopf algebra. Then we introduce and construct a new braided monoidal category HHeYDπ over a π-graded Hopf algebra H. We introduce the notion of a π-double centralizer pro
Externí odkaz:
https://doaj.org/article/bf9e39bff3994a5283083e824e3b23a3
Autor:
Senlin Zhang, Shuanhong Wang
Publikováno v:
Mathematics, Vol 10, Iss 6, p 968 (2022)
We introduce and study a large class of coalgebras (possibly (non)coassociative) with group-algebraic structures Hopf (non)coassociative group-algebras. Hopf (non)coassociative group-algebras provide a unifying framework for classical Hopf algebras a
Externí odkaz:
https://doaj.org/article/c8601d01ee404ab4b75e7af8a5021479
Publikováno v:
Mathematics, Vol 10, Iss 3, p 426 (2022)
We introduce and discuss the notions of Rota–Baxter bialgebra equation systems and Rota–Baxter Hopf algebras. Then we construct a lot of examples based on Hopf quasigroups.
Externí odkaz:
https://doaj.org/article/4000aae6f1b442d19e0f696525a0cb8e
Autor:
Alfons Van Daele, Shuanhong Wang
Publikováno v:
Symmetry, Vol 12, Iss 12, p 1975 (2020)
Let (A,Δ) be a weak multiplier Hopf algebra. It is a pair of a non-degenerate algebra A, with or without identity, and a coproduct Δ:A⟶M(A⊗A), satisfying certain properties. In this paper, we continue the study of these objects and construct ne
Externí odkaz:
https://doaj.org/article/c5870e7737444c5491a1dea109cb752c
Publikováno v:
Communications in Algebra. 50:4517-4535
Let $H$ be a bialgebra. Let $\sigma: H\otimes H\to A$ be a linear map, where $A$ is a left $H$-comodule coalgebra, and an algebra with a left $H$-weak action $\triangleright$. Let $\tau: H\otimes H\to B$ be a linear map, where $B$ is a right $H$-como
Autor:
Linlin Liu, Shuanhong Wang
Publikováno v:
Filomat. 36:2617-2636
This paper is devoted to the construction of Hom-Leibniz H-pseudoalgebras, which unify Hom-Lie H-pseudoalgebras, Leibniz H-pseudoalgebras and Hom-Leibniz algebras. Firstly, we give the construction theorem and obtain a class of Hom-Leibniz H-pseudoal