Zobrazeno 1 - 10
of 112
pro vyhledávání: '"Shuangjie Peng"'
Autor:
Xiaoming An, Shuangjie Peng
Publikováno v:
Electronic Research Archive, Vol 30, Iss 2, Pp 585-614 (2022)
We study the following fractional Schrödinger equation $ \begin{equation*} \label{eq0.1} \varepsilon^{2s}(-\Delta)^s u + V(x)u = f(u), \,\,x\in\mathbb{R}^N, \end{equation*} $ where $ s\in(0,1) $. Under some conditions on $ f(u) $, we show that
Externí odkaz:
https://doaj.org/article/620673144b9540b69a44bf4c16fafde4
Autor:
Qihan He, Shuangjie Peng
Publikováno v:
Electronic Journal of Differential Equations, Vol 2019, Iss 127,, Pp 1-18 (2019)
This article concerns the existence, characterization and number of ground states for the system consisting of m coupled semilinear equations $$\displaylines{ -\Delta u_i +\lambda u_i =\sum_{j=1}^m k_{ij} \frac{q_{ij}}{p+1}|u_j|^{p_{ij}}|u_i|^{q_
Externí odkaz:
https://doaj.org/article/847b0496db394733806fc844485ec382
Publikováno v:
SIAM Journal on Mathematical Analysis. 55:773-804
Publikováno v:
Journal of Differential Equations. 341:150-188
Publikováno v:
Science China Mathematics. 66:977-1002
Publikováno v:
Advanced Nonlinear Studies. 22:41-66
We study the following fractional logarithmic Schrödinger equation: ( − Δ ) s u + V ( x ) u = u log u 2 , x ∈ R N , {\left(-\Delta )}^{s}u+V\left(x)u=u\log {u}^{2},\hspace{1em}x\in {{\mathbb{R}}}^{N}, where N ≥ 1 N\ge 1 , ( − Δ ) s {\left(
Publikováno v:
Calculus of Variations and Partial Differential Equations. 62
Autor:
Qi Li, Shuangjie Peng
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 152:879-911
This paper deals with the following fractional elliptic equation with critical exponent \[ \begin{cases} \displaystyle (-\Delta )^{s}u=u_{+}^{2_{s}^{*}-1}+\lambda u-\bar{\nu}\varphi_{1}, & \text{in}\ \Omega,\\ \displaystyle u=0, & \text{in}\ {{\mathf
Publikováno v:
Journal of Functional Analysis. 284:109921
Publikováno v:
Journal of Differential Equations. 268:541-589
In this paper, we revisit the singularly perturbation problem (0.1) − ( ϵ 2 a + ϵ b ∫ R 3 | ∇ u | 2 ) Δ u + V ( x ) u = | u | p − 1 u in R 3 , where a , b , ϵ > 0 , 1 p 5 are constants and V is a potential function. First we establish the