Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Shu-Xin Miao"'
Publikováno v:
Journal of Function Spaces, Vol 2024 (2024)
In this paper, a new matrix splitting iteration method is presented to solve the absolute value equation. The proposed method has three parameters, and it is expected that its convergence efficiency can be improved by selecting appropriate parameters
Externí odkaz:
https://doaj.org/article/0a3a6e2c9412484b94e9a41468d1bb9d
Publikováno v:
AIMS Mathematics, Vol 6, Iss 2, Pp 1743-1753 (2021)
Picard-type methods are efficient methods for solving the absolute value equation Ax−|x|=b. To further improve the performance of Picard iteration method, a new inexact Picard iteration method, named Picard-SHSS iteration method, is proposed to sol
Externí odkaz:
https://doaj.org/article/f788211714474feea969e1d7971c3955
Autor:
Ting Huang, Shu-Xin Miao
Publikováno v:
AIMS Mathematics, Vol 6, Iss 1, Pp 794-805 (2021)
In this paper, we further investigate the single proper nonnegative splittings and double proper nonnegative splittings of rectangular matrices. Two convergence theorems for the single proper nonnegative splitting of a semimonotone matrix are derived
Externí odkaz:
https://doaj.org/article/3abcad72f623440ab022ff5ee33f0f1c
Autor:
Ting Huang, Shu-Xin Miao
Publikováno v:
AIMS Mathematics, Vol 6, Iss 7, Pp 7741-7748 (2021)
The comparison results for K-double splittings of one K-monotone matrix are established in the literatures. As comparison theorems between the spectral radii of different matrices are a useful tool for judging the efficiency of preconditioners, we pr
Externí odkaz:
https://doaj.org/article/e04cffa0f50546f3a844149b19d9603c
Autor:
Shu-Xin Miao, Jing Zhang
Publikováno v:
AIMS Mathematics, Vol 5, Iss 6, Pp 7301-7315 (2020)
Based on the single-step iteration (SSI) method for the non-Hermitian positive definite linear systems, we propose a Uzawa-SSI method for solving the saddle point problems with non-Hermitian positive definite (1, 1) block in this paper. The convergen
Externí odkaz:
https://doaj.org/article/e94a6516ea1b439b9a52db2f4d647991
Autor:
Shu-Xin Miao, Dan Zhang
Publikováno v:
Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-12 (2018)
Abstract Recently, based on the Hadjidimos preconditioner, a preconditioned GAOR method was proposed for solving the linear complementarity problem (Liu and Li in East Asian J. Appl. Math. 2:94–107, 2012). In this paper, we propose a new preconditi
Externí odkaz:
https://doaj.org/article/0f1953ddff964640bad7dda3db3d9eb1
Autor:
Shu-Xin Miao, Yang Cao
Publikováno v:
Journal of Applied Mathematics, Vol 2014 (2014)
Comparison theorems between the spectral radii of different matrices are useful tools for judging the efficiency of preconditioners. In this paper, some comparison theorems for the spectral radii of matrices arising from proper splittings of differen
Externí odkaz:
https://doaj.org/article/c79d9456d16d4d969554033dd320f593
Autor:
Xin-Mei Lv, Shu-Xin Miao
Publikováno v:
Computational & Applied Mathematics; Oct2024, Vol. 43 Issue 7, p1-11, 11p
Autor:
Kai Xie, Shu-Xin Miao
Publikováno v:
Japan Journal of Industrial and Applied Mathematics. 40:1159-1173
Autor:
Ting Huang, Shu-Xin Miao
Publikováno v:
ScienceAsia; Dec2023, Vol. 49 Issue 6, p939-946, 8p