Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Shrinivasan Patnaikuni"'
Autor:
Shrinivasan Patnaikuni, Sachin Gengaje
Publikováno v:
IEEE Access, Vol 9, Pp 135879-135889 (2021)
Conventionally syntactic pattern recognition tasks have been driven by grammars defining a syntactic structure. Syntactic Pattern recognition tasks were primarily relying on the ability of parsing algorithms to recognize the patterns in the input dat
Externí odkaz:
https://doaj.org/article/65a7c072eda04fea8b18733c535f58ba
Publikováno v:
IOT with Smart Systems ISBN: 9789811639449
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::44a7603365b41e3f32d2dc19ea91cbde
https://doi.org/10.1007/978-981-16-3945-6_36
https://doi.org/10.1007/978-981-16-3945-6_36
Autor:
Nesar Ahmad, Tameem Ahmad, V.S. Anoop, S. Asharaf, Punam Bedi, Michela Bertolotto, Veenu Bhasin, Suparna Biswas, Rashmi Burse, Soubhik Chakraborty, Nikhil V. Chandran, Richard Chbeir, Chandreyee Chowdhury, Sumit Dalal, Abdelhadi Daoui, Matheus D. Morais, Mark Douglas de Azevedo Jacyntho, Mauro Dragoni, Shripriya Dubey, Sandip Dutta, Sachin R. Gengaje, Noreddine Gherabi, Neha Gupta, Priti Jagwani, Sarika Jain, Haklae Kim, Ravi Lourdusamy, Abderrahim Marzouk, Xavierlal J. Mattam, Gavin McArdle, Sonia Mehla, Asmita Nandy, Dympna O'Sullivan, Archana Patel, Monika Patel, Sikandar Patel, Shrinivasan Patnaikuni, Prashant Pranav, Giuseppe Rizzo, Jayita Saha, Ramesh Saha, Salma Sassi, Sayani Sen, Matteo A. Senese, Mohammad Shaharyar Shaukat, null Shivani, Mohammed Tanzeem, Shivani A Trivedi, Jan Wagner
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c1e6655ac0685ee81ecd9042477db52f
https://doi.org/10.1016/b978-0-12-822468-7.00023-7
https://doi.org/10.1016/b978-0-12-822468-7.00023-7
With the advent of state of the art of artificial intelligence technologies like deep learning, several digital healthcare records are yet to be fully explored. Several data processing and analytics methods treat the data as numbers and strings and a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::60684147dbffcb866eca772453b93e89
https://doi.org/10.1016/b978-0-12-822468-7.00009-2
https://doi.org/10.1016/b978-0-12-822468-7.00009-2
Publikováno v:
2020 International Conference on Communication and Signal Processing (ICCSP).
The paper proposes a formal approach for parsing grammatical derivations in the context of the principle of semantic compositionality by defining a mapping between Probabilistic Context Free Grammar (PCFG) and Multi Entity Bayesian Network (MEBN) the
Publikováno v:
2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT).
Probabilistic context free grammars (PCFG) have been the core of the probabilistic reasoning based parsers for several years especially in the context of the NLP. Multi entity Bayesian networks (MEBN) a First Order Logic probabilistic reasoning metho