Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Shotton, Jack"'
Autor:
Funck, Daniel, Shotton, Jack
Let $l$ and $p$ be distinct primes, let $F$ be a local field with residue field of characteristic $p$, and let $\mathfrak{X}$ be the irreducible component of the moduli space of Langlands parameters for $GL_3$ over $\mathbb{Z}_l$ corresponding to par
Externí odkaz:
http://arxiv.org/abs/2409.17812
Autor:
Shotton, Jack
Let $F/\mathbb{Q}_p$ be finite and let $\mathfrak{X}_G$ be the moduli space of Langlands parameters valued in $G$, in characteristic distinct from $p$. First, we determine the irreducible components of $\mathfrak{X}_G$. Then, we determine the local s
Externí odkaz:
http://arxiv.org/abs/2302.10125
Autor:
Li, Tzu-Jan, Shotton, Jack
Publikováno v:
Bull. London Math. Soc. (2023)
Let $G$ be a connected reductive group defined over a finite field $\mathbb{F}_q$ of characteristic $p$, with Deligne--Lusztig dual $G^\ast$. We show that, over $\overline{\mathbb{Z}}[1/pM]$ where $M$ is the product of all bad primes for $G$, the end
Externí odkaz:
http://arxiv.org/abs/2205.05601
Autor:
Shotton, Jack
Publikováno v:
Compositio Mathematica 158 (2022) 721-749
We determine the local deformation rings of sufficiently generic mod $l$ representations of the Galois group of a $p$-adic field, when $l \neq p$, relating them to the space of $q$-power-stable semisimple conjugacy classes in the dual group. As a con
Externí odkaz:
http://arxiv.org/abs/2007.13397
Autor:
Manning, Jeff, Shotton, Jack
Publikováno v:
Mathematische Annalen 379 (2020) 187-234
We prove Ihara's lemma for the mod $l$ cohomology of Shimura curves, localised at a maximal ideal of the Hecke algebra, under a large image hypothesis on the associated Galois representation. This was proved by Diamond and Taylor, for Shimura curves
Externí odkaz:
http://arxiv.org/abs/1907.06043
Autor:
Shotton, Jack
Let l and p be primes, let F/Q_p be a finite extension with absolute Galois group G_F, let F be a finite field of characteristic l, and let p̄ : G_F→ GL_n(F) be a continuous representation. Let R^□(p̄) be the universal framed deformation ring f
Externí odkaz:
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.749084
Autor:
Shotton, Jack
Publikováno v:
Documenta Mathematica 25, 143-157 (2020)
Let $F$ be a finite extension of $\mathbb{Q}_p$. We prove that the category of finitely presented smooth $Z$-finite representations of $GL_2(F)$ over a finite extension of $\mathbb{F}_p$ is an abelian subcategory of the category of all smooth represe
Externí odkaz:
http://arxiv.org/abs/1710.06003
Autor:
Shotton, Jack
Publikováno v:
Duke Math. J. 167, no. 4 (2018), 603-678
Let $l$ and $p$ be primes, let $F/\mathbb{Q}_p$ be a finite extension with absolute Galois group $G_F$, let $\mathbb{F}$ be a finite field of characteristic $l$, and let $\bar{\rho} : G_F \rightarrow GL_n(\mathbb{F})$ be a continuous representation.
Externí odkaz:
http://arxiv.org/abs/1608.01784
Autor:
Shotton, Jack
Publikováno v:
Algebra Number Theory 10 (2016) 1437-1475
We compute the deformation rings of two dimensional mod l representations of Gal(Fbar/F) with fixed inertial type, for l an odd prime, p a prime distinct from p and F/Q_p a finite extension. We show that in this setting (when p is also odd) an analog
Externí odkaz:
http://arxiv.org/abs/1309.1600
Autor:
Shotton, Jack
Publikováno v:
IMRN: International Mathematics Research Notices; Jun2024, Vol. 2024 Issue 11, p9020-9035, 16p