Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Shoji, Tsuboi"'
Autor:
Shoji Tsuboi
Publikováno v:
Finite or infinite dimensional complex analysis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::61564aa64b8a932b99accf9e7b470884
https://doi.org/10.1201/9780429187681-56
https://doi.org/10.1201/9780429187681-56
Autor:
Shoji Tsuboi
Publikováno v:
Geometric Singularity Theory.
By a classical formula due to Enriques, the Chern numbers of the non- singular normalization X of an algebraic surface S with ordinary singularities in
Autor:
Shoji Tsuboi
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 79, no. 1 (2003), 1-4
We give an example of hypersurfaces with non-isolated singularities in $\mathrm{P}^4(\mathbf{C})$, whose normalizations have isolated rational quadruple points only as singularities. From Schlessinger's criterion, it follows that these isolated ratio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9b02cfd1af8555984ea0f0bdb921f5f1
http://projecteuclid.org/euclid.pja/1116442543
http://projecteuclid.org/euclid.pja/1116442543
Autor:
Shoji Tsuboi
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 75, no. 7 (1999), 99-102
Let $S$ be a compact complex surface with ordinary singularities. We denote by $\Theta_S$ the sheaf of germs of holomorphic tangent vector fields on $S$. In this paper we shall give a description of the cohomology $H^1(S, \Theta_S)$, which is called
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::adb95d753b370bbb466e362ed80d7a7e
http://projecteuclid.org/euclid.pja/1148393857
http://projecteuclid.org/euclid.pja/1148393857
Autor:
Shoji Tsuboi
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 71, no. 9 (1995), 207-209
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0f376cacf6811b72acfa0c62f796ba15
http://projecteuclid.org/euclid.pja/1195510545
http://projecteuclid.org/euclid.pja/1195510545
Autor:
Shoji, Tsuboi, Masaki, Okawa
Publikováno v:
東北數學雜誌. Second series = Tohoku mathematical journal. Second series. 40(2):269-291